Affichage des articles dont le libellé est perception de la parole. Afficher tous les articles
Affichage des articles dont le libellé est perception de la parole. Afficher tous les articles

25 mai 2021

Déploiement de l'attention auditive chez les jeunes adultes avec un diagnostic de "trouble du spectre de l'autisme"

Aperçu: G.M.

La difficulté à écouter dans des environnements bruyants est une plainte fréquente des personnes avec un diagnostic de "trouble du spectre de l'autisme" (dTSA). Cependant, les mécanismes sous-jacents à ces défis de traitement auditif sont inconnus. 

Cette étude préliminaire a examiné le déploiement de l'attention auditive chez les adultes avec un dTSA. Les participants ont été invités à maintenir ou à changer l'attention entre deux flux vocaux simultanés dans trois conditions: emplacement (co-localisé contre ± 30 ° de séparation), voix (même voix contre contraste homme-femme) et les deux signaux ensemble. 

Les résultats ont montré que les personnes avec un dTSA peuvent diriger l'attention de manière sélective en utilisant l'emplacement ou les indices vocaux, mais la performance était meilleure lorsque les deux signaux étaient présents. En comparaison avec les adultes neurotypiques, la performance globale était moins précise dans toutes les conditions. 

Ces résultats justifient une enquête plus approfondie sur les différences de déploiement de l'attention auditive chez les personnes avec un TSA.

. 2021 May 19.  doi: 10.1007/s10803-021-05076-8. 

Auditory Attention Deployment in Young Adults with Autism Spectrum Disorder

Affiliations

Abstract

Difficulty listening in noisy environments is a common complaint of individuals with autism spectrum disorder (ASD). However, the mechanisms underlying such auditory processing challenges are unknown. This preliminary study investigated auditory attention deployment in adults with ASD. Participants were instructed to maintain or switch attention between two simultaneous speech streams in three conditions: location (co-located versus ± 30° separation), voice (same voice versus male-female contrast), and both cues together. Results showed that individuals with ASD can selectively direct attention using location or voice cues, but performance was best when both cues were present. In comparison to neurotypical adults, overall performance was less accurate across all conditions. These findings warrant further investigation into auditory attention deployment differences in individuals with ASD.

Keywords: Auditory attention; Auditory processing; Autism spectrum disorder; Selective attention; Speech perception.

References

    1. Algazi, V. R., Duda, R. O., Thompson, D. M., & Avendano, C. (2001). The cipic hrtf database. In Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575), 24 Oct 2001 (pp. 99–102). doi: https://doi.org/10.1109/ASPAA.2001.969552
    1. Allen, G., & Courchesne, E. (2001). Attention function and dysfunction in autism. Frontiers in Bioscience, 6, D105-119. https://doi.org/10.2741/allen - DOI - PubMed
    1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. (4th ed.). American Psychiatric Association.
    1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. (5th ed.). American Psychiatric Association. - DOI
    1. Bronkhorst, A. W. (2015). The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, and Psychophysics, 77(5), 1465–1487. https://doi.org/10.3758/s13414-015-0882-9 - DOI
    1. Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. Journal of the Acoustical Society of America, 109(3), 1101–1109. https://doi.org/10.1121/1.1345696 - DOI
    1. Brungart, D. S., & Simpson, B. D. (2007). Cocktail party listening in a dynamic multitalker environment. Perception and Psychophysics, 69(1), 79–91. https://doi.org/10.3758/bf03194455 - DOI - PubMed
    1. Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471. https://doi.org/10.1016/j.tics.2004.08.008 - DOI - PubMed
    1. Ceponiene, R., Lepistö, T., Shestakova, A., Vanhala, R., Alku, P., Näätänen, R., & Yaguchi, K. (2003). Speech-sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proceedings of the National Academy of Sciences, 100(9), 5567–5572. https://doi.org/10.1073/pnas.0835631100 - DOI
    1. Darwin, C. J. (1997). Auditory grouping. Trends in Cognitive Sciences, 1(9), 327–333. https://doi.org/10.1016/S1364-6613(97)01097-8 - DOI - PubMed
    1. Darwin, C. J., Brungart, D. S., & Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. Journal of the Acoustical Society of America, 114(5), 2913–2922. https://doi.org/10.1121/1.1616924 - DOI
    1. Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., & Liaw, J. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology, 40(2), 271–283. https://doi.org/10.1037/0012-1649.40.2.271 - DOI - PubMed
    1. Du, Y., He, Y., Ross, B., Bardouille, T., Wu, X., Li, L., & Alain, C. (2011). Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation. Cerebral Cortex, 21(3), 698–707. https://doi.org/10.1093/cercor/bhq136 - DOI - PubMed
    1. Ericson, M. A., Brungart, D. S., & Simpson, B. D. (2004). Factors that influence intelligibility in multitalker speech displays. The International Journal of Aviation Psychology, 14(3), 313–334. https://doi.org/10.1207/s15327108ijap1403_6 - DOI
    1. Haesen, B., Boets, B., & Wagemans, J. (2011). A review of behavioural and electrophysiological studies on auditory processing and speech perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 5(2), 701–714. https://doi.org/10.1016/j.rasd.2010.11.006 - DOI
    1. Jones, M. K., Kraus, N., Bonacina, S., Nicol, T., Otto-Meyer, S., & Roberts, M. Y. (2020). Auditory processing differences in toddlers with autism spectrum disorder. Journal of Speech, Language, and Hearing Research, 63(5), 1608–1617. https://doi.org/10.1044/2020_JSLHR-19-00061 - DOI - PubMed - PMC
    1. Klin, A. (1993). Auditory brainstem responses in autism: Brainstem dysfunction or peripheral hearing loss? Journal of Autism and Developmental Disorders, 23(1), 15–35. https://doi.org/10.1007/BF01066416 - DOI - PubMed
    1. Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measures. Developmental Science, 8(1), F1-f12. https://doi.org/10.1111/j.1467-7687.2004.00384.x - DOI - PubMed
    1. Larson, E., & Lee, A. K. C. (2013). The cortical dynamics underlying effective switching of auditory spatial attention. NeuroImage, 64, 365–370. https://doi.org/10.1016/j.neuroimage.2012.09.006 - DOI - PubMed
    1. Larson, E., & Lee, A. K. C. (2013). Influence of preparation time and pitch separation in switching of auditory attention between streams. The Journal of the Acoustical Society of America, 134(2), EL165–EL171. https://doi.org/10.1121/1.4812439 - DOI - PubMed - PMC
    1. Lawo, V., & Koch, I. (2015). Attention and action: The role of response mappings in auditory attention switching. Journal of Cognitive Psychology, 27(2), 194–206. https://doi.org/10.1080/20445911.2014.995669 - DOI
    1. Lee, A. K., Larson, E., Maddox, R. K., & Shinn-Cunningham, B. G. (2014). Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 307, 111–120. https://doi.org/10.1016/j.heares.2013.06.010 - DOI - PubMed
    1. Lepistö, T., Kuitunen, A., Sussman, E., Saalasti, S., Jansson-Verkasalo, E., Nieminen-von Wendt, T., & Kujala, T. (2009). Auditory stream segregation in children with asperger syndrome. Biological Psychology, 82(3), 301–307. https://doi.org/10.1016/j.biopsycho.2009.09.004 - DOI - PubMed - PMC
    1. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212. https://doi.org/10.1007/bf02211841 - DOI - PubMed
    1. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. https://doi.org/10.1007/bf02172145 - DOI - PubMed - PMC
    1. Lord, C., Rutter, M., DiLavore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule–(ADOS-2). Western Psychological Corporation.
    1. McCloy, D. R., Larson, E., & Lee, A. K. C. (2018). Auditory attention switching with listening difficulty: Behavioral and pupillometric measures. Journal of the Acoustical Society of America, 144(5), 2764. https://doi.org/10.1121/1.5078618 - DOI
    1. McCloy, D. R., Lau, B. K., Larson, E., Pratt, K. A. I., & Lee, A. K. C. (2017). Pupillometry shows the effort of auditory attention switching. Journal of the Acoustical Society of America, 141(4), 2440. https://doi.org/10.1121/1.4979340 - DOI
    1. O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. Neuroscience and Biobehavioral Reviews, 36(2), 836–854. https://doi.org/10.1016/j.neubiorev.2011.11.008 - DOI - PubMed
    1. Otto-Meyer, S., Krizman, J., White-Schwoch, T., & Kraus, N. (2018). Children with autism spectrum disorder have unstable neural responses to sound. Experimental Brain Research, 236(3), 733–743. https://doi.org/10.1007/s00221-017-5164-4 - DOI - PubMed
    1. Reed, P., & McCarthy, J. (2012). Cross-modal attention-switching is impaired in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(6), 947–953. https://doi.org/10.1007/s10803-011-1324-8 - DOI - PubMed
    1. Rosenhall, U., Nordin, V., Sandstrom, M., Ahlsen, G., & Gillberg, C. (1999). Autism and hearing loss. Journal of Autism and Developmental Disorders, 29(5), 349–357. https://doi.org/10.1023/a:1023022709710 - DOI - PubMed
    1. Shinn-Cunningham, B., Best, V., & Lee, A. K. C. (2017). Auditory object formation and selection. In J. C. Middlebrooks, J. Z. Simon, A. N. Popper, & R. R. Fay (Eds.), The auditory system at the cocktail party. Springer.
    1. Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12(4), 283–299. https://doi.org/10.1177/1084713808325306 - DOI - PubMed - PMC
    1. Szymanski, C. A., Brice, P. J., Lam, K. H., & Hotto, S. A. (2012). Deaf children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(10), 2027–2037. https://doi.org/10.1007/s10803-012-1452-9 - DOI - PubMed
    1. Teder-Sälejärvi, W. A., Pierce, K. L., Courchesne, E., & Hillyard, S. A. (2005). Auditory spatial localization and attention deficits in autistic adults. Cognitive Brain Research, 23(2–3), 221–234. https://doi.org/10.1016/j.cogbrainres.2004.10.021 - DOI - PubMed
    1. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Joshua Wilson, K., Millman, J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, Eric, … van Mulbregt, P. (2020). Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 - DOI - PubMed - PMC
    1. Wechsler, D. (2011). Wechsler abbreviated scale of intelligence–second edition. Minneapolis: NCS Pearson.

27 mars 2017

La perception de la parole multisensorielle dans le trouble du spectre de l'autisme: du phonème à la perception du mot entier

Aperçu: G.M.
La perception de la parole dans les environnements bruyants est stimulée lorsqu'un auditeur peut voir la bouche du locuteur et intégrer les informations auditives et visuelles de la parole. Les enfants autistes ont une capacité réduite à intégrer l'information sensorielle à travers les modalités, ce qui contribue aux symptômes de base de l'autisme, tels que les déficits dans la communication sociale. L'étude explore les capacités des enfants autistes et les enfants au développement typique (TD) à intégrer les stimuli auditifs et visuels dans divers rapports signal / bruit (SNR).
Au niveau de la reconnaissance des phonèmes, les enfants autistes ont présenté une performance réduite par rapport à leurs pairs TD dans les modalités auditives, visuelles et audiovisuelles. Cependant, contrairement à leur performance au niveau de la reconnaissance des mots entiers, les enfants autistes et TD ont montré des avantages de l'intégration multisensorielle pour la reconnaissance du phonème.
Ainsi, alors que les enfants autistes présentaient des bénéfices multisensoriels typiques lors de la reconnaissance du phonème, ces avantages ne se traduisaient pas par un avantage multisensoriel typique de la reconnaissance du mot entier dans les environnements bruyants.  
Nous posons l'hypothèse que les déficiences sensorielles chez les enfants autistes augmentent le seuil de SNR nécessaire pour extraire des informations significatives à partir d'une entrée sensorielle donnée, ce qui entraîne la non-présentation des avantages comportementaux d'informations sensorielles supplémentaires au niveau de la reconnaissance de mots entiers  

Autism Res. 2017 Mar 24. doi: 10.1002/aur.1776.

Multisensory speech perception in autism spectrum disorder: From phoneme to whole-word perception

Author information

1
Department of Psychology, Western University, London, ON, Canada.
2
Brain and Mind Institute, Western University, London, ON, Canada.
3
Department of Psychology, University of Washington, Seattle, WA.
4
York University, Toronto, ON, Canada.
5
Department of Psychology, University of Toronto, Toronto, ON, Canada.
6
Rotman Research Institute, Toronto, ON, Canada.
7
Vanderbilt Brain Institute, Nashville, TN.
8
Vanderbilt Kennedy Center, Nashville, TN, USA.
9
Vanderbilt University, Nashville, TN.
10
Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN.
11
Department of Psychology, Vanderbilt University, Nashville, TN.

Abstract

Speech perception in noisy environments is boosted when a listener can see the speaker's mouth and integrate the auditory and visual speech information. Autistic children have a diminished capacity to integrate sensory information across modalities, which contributes to core symptoms of autism, such as impairments in social communication. We investigated the abilities of autistic and typically-developing (TD) children to integrate auditory and visual speech stimuli in various signal-to-noise ratios (SNR). Measurements of both whole-word and phoneme recognition were recorded. At the level of whole-word recognition, autistic children exhibited reduced performance in both the auditory and audiovisual modalities. Importantly, autistic children showed reduced behavioral benefit from multisensory integration with whole-word recognition, specifically at low SNRs. At the level of phoneme recognition, autistic children exhibited reduced performance relative to their TD peers in auditory, visual, and audiovisual modalities. However, and in contrast to their performance at the level of whole-word recognition, both autistic and TD children showed benefits from multisensory integration for phoneme recognition. In accordance with the principle of inverse effectiveness, both groups exhibited greater benefit at low SNRs relative to high SNRs. Thus, while autistic children showed typical multisensory benefits during phoneme recognition, these benefits did not translate to typical multisensory benefit of whole-word recognition in noisy environments. We hypothesize that sensory impairments in autistic children raise the SNR threshold needed to extract meaningful information from a given sensory input, resulting in subsequent failure to exhibit behavioral benefits from additional sensory information at the level of whole-word recognition. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
PMID: 28339177
DOI: 10.1002/aur.1776