Aperçu: G.M.
Les
populations altérées de microbiome intestinal sont associées à un large
éventail de troubles neurodéveloppementaux, y compris le "trouble du
spectre de l'autisme" et les troubles de l'humeur. Dans
les modèles animaux, la modulation des populations du microbiome
intestinal par manipulation diététique influence la fonction et le
comportement du cerveau et a démontré une amélioration des symptômes
comportementaux. Avec
des différences frappantes dans le comportement axé sur le microbiome,
les chercheurs ont investigué pour savoir si ces changements de comportement s'accompagnaient
également de changements correspondants dans la microstructure du tissu
neural. En
utilisant l'imagerie du tenseur de diffusion, ils ont identifié des
changements globaux dans l'intégrité structurelle de la substance
blanche se produisant d'une manière dépendante de l'alimentation.
L'analyse
du séquençage de l'ARN ribosomique 16S des bactéries intestinales a
également montré des changements dans les populations bactériennes en
fonction du régime alimentaire.
Des
modifications de la structure cérébrale ont été associées à des
modifications du régime alimentaire dans les populations de microbiome
intestinal, à l'aide d'un classificateur automatique pour l'évaluation
quantitative de la force des associations région microbiome-cerveau.
Ces associations permettent de tester notre compréhension de
l'axe intestin-cerveau-microbiote en révélant les liens possibles entre
les populations modifiées et dysbiotiques du microbiote intestinal et
les changements dans la structure cérébrale, soulignant l'impact
potentiel du régime et des effets métagénomiques en neuro-imagerie.
Ong IM1,2,
Gonzalez JG3,
McIlwain SJ1,2,
Sawin EA4,
Schoen AJ5,
Adluru N6,
Alexander AL3,6,7,
Yu JJ8,9,10,11.
- 1
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- 2
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
- 3
- Department
of Medical Physics, Wisconsin Institutes for Medical Research,
University of Wisconsin School of Medicine and Public Health, Madison,
WI, 53705, USA.
- 4
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, E3/366 Clinical Science
Center, 600 Highland Avenue, M/C 3252, Madison, WI, 53792-3252, USA.
- 5
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- 6
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- 7
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
- 8
- Department
of Radiology, University of Wisconsin School of Medicine and Public
Health, E3/366 Clinical Science Center, 600 Highland Avenue, M/C 3252,
Madison, WI, 53792-3252, USA. jpyu@uwhealth.org.
- 9
- Department
of Psychiatry, University of Wisconsin School of Medicine and Public
Health, Madison, WI, 53705, USA. jpyu@uwhealth.org.
- 10
- Department
of Biomedical Engineering, College of Engineering, University of
Wisconsin-Madison, Madison, WI, 53706, USA. jpyu@uwhealth.org.
- 11
- Neuroscience
Training Program, Wisconsin Institutes for Medical Research, University
of Wisconsin-Madison, Madison, WI, 53705, USA. jpyu@uwhealth.org.
Abstract
Altered
gut microbiome populations are associated with a broad range of
neurodevelopmental disorders including autism spectrum disorder and mood
disorders. In animal models, modulation of gut microbiome populations
via dietary manipulation influences brain function and behavior and has
been shown to ameliorate behavioral symptoms. With striking differences
in microbiome-driven behavior, we explored whether these behavioral
changes are also accompanied by corresponding changes in neural tissue
microstructure. Utilizing diffusion tensor imaging, we identified global
changes in white matter structural integrity occurring in a
diet-dependent manner. Analysis of 16S ribosomal RNA sequencing of gut
bacteria also showed changes in bacterial populations as a function of
diet. Changes in brain structure were found to be associated with
diet-dependent changes in gut microbiome populations using a machine
learning classifier for quantitative assessment of the strength of
microbiome-brain region associations. These associations allow us to
further test our understanding of the gut-brain-microbiota axis by
revealing possible links between altered and dysbiotic gut microbiome
populations and changes in brain structure, highlighting the potential
impact of diet and metagenomic effects in neuroimaging.