Affichage des articles dont le libellé est essai contrôlé randomisé. Afficher tous les articles
Affichage des articles dont le libellé est essai contrôlé randomisé. Afficher tous les articles

06 novembre 2022

Efficacité d'une intervention psychologique assistée par robot pour les enfants avec un diagnostic de troubles du spectre de l'autisme

Aperçu: G.M.

Les difficultés d'interaction sociale caractérisent les enfants avec un diagnostic de "troubles du spectre de l'autisme" (dTSA) et ont un impact négatif sur leur vie quotidienne. L'intégration d'un robot social-humanoïde dans le traitement clinique standard s'est avérée prometteuse.
L'objectif principal de cette étude contrôlée randomisée était d'évaluer l'efficacité d'une intervention psychosociale assistée par robot et l'objectif secondaire était d'étudier les différences potentielles entre un groupe d'intervention assistée par robot et un groupe témoin recevant une intervention humaine uniquement.
L'analyse des résultats a montré que l'intervention assistée par robot pouvait être bénéfique en améliorant les compétences psychosociales des enfants. Cette amélioration a été mise en évidence par les tests neuropsychologiques et les rapports des parents.
La comparaison des groupes n'a présenté que des différences statistiquement significatives minimes. L'étude souligne le potentiel des interventions assistées par robot pour augmenter les soins standard.


. 2022 Nov 4.
doi: 10.1007/s10803-022-05796-5. Online ahead of print.

Effectiveness of a Robot-Assisted Psychological Intervention for Children with Autism Spectrum Disorder

Affiliations

Abstract

Difficulties with social interaction characterise children with Autism Spectrum Disorders and have a negative impact in their everyday life. Integrating a social-humanoid robot within the standard clinical treatment has been proven promising. The main aim of this randomised controlled study was to evaluate the effectiveness of a robot-assisted psychosocial intervention and the secondary aim was to investigate potential differences between a robot-assisted intervention group and a control group receiving intervention by humans only. The analysis of the results showed that robot-assisted intervention could be beneficial by improving children's psychosocial skills. This improvement was highlighted by neuropsychological testing and parent reporting. Group comparison only presented minimal statistically significant differences. The study underpins the potential of robot-assisted interventions to augment standard care.

Keywords: Autism spectrum disorders; Human–robot interaction; Psychological intervention; Randomised controlled trial; Robot-assisted therapy.

References

    1. Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA School-Age Forms & Profiles. University of Vermont, Research Center for Children, Youth, & Families.
    1. Alabdulkareem, A., Alhakbani, N., & Al-Nafjan, A. (2022). A systematic review of research on robot-assisted therapy for children with autism. Sensors, 22(3), 944. https://doi.org/10.3390/s22030944 - DOI - PubMed - PMC
    1. Altschuler, M., Sideridis, G., Kala, S., Warshawsky, M., Gilbert, R., Carroll, D., Burger-Caplan, R., & Faja, S. (2018). Measuring individual differences in cognitive, affective, and spontaneous theory of mind among school-aged children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 48(11), 3945–3957. https://doi.org/10.1007/s10803-018-3663-1 - DOI - PubMed - PMC
    1. Amirova, A., Rakhymbayeva, N., Yadollahi, E., Sandygulova, A., & Johal, W. (2021). 10 Years of Human-NAO Interaction Research: A Scoping Review. Frontiers in Robotics and AI, 8, 744526. https://doi.org/10.3389/frobt.2021.744526 - DOI - PubMed - PMC
    1. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46. https://doi.org/10.1016/0010-0277(85)90022-8 - DOI - PubMed
    1. Begeer, S., Gevers, C., Clifford, P., Verhoeve, M., Kat, K., Hoddenbach, E., & Boer, F. (2011). Theory of mind training in children with autism: A randomized controlled trial. Journal of Autism and Developmental Disorders, 41(8), 997–1006. https://doi.org/10.1007/s10803-010-1121-9 - DOI - PubMed
    1. Begum, M., Serna, R. W., & Yanco, H. A. (2016). Are robots ready to deliver autism interventions? A comprehensive review. International Journal of Social Robotics, 8(2), 157–181. https://doi.org/10.1007/s12369-016-0346-y - DOI
    1. Bekele, E. T., Crittendon, J. A., Swanson, A. R., Sarkar, N., & Warren, Z. E. (2014). Pilot clinical application of an adaptive robotic system for young children with autism. Autism, 18, 598–608. https://doi.org/10.1177/1362361313479454 - DOI - PubMed
    1. Boccanfuso, L., Scarborough, S., Abramson, R. K., Hall, A. V., Wright, H. H., & O’Kane, J. M. (2017). A low-cost socially assistive robot and robot-assisted intervention for children with autism spectrum disorder: Field trials and lessons learned. Autonomous Robots, 41(3), 637–655. https://doi.org/10.1007/s10514-016-9554-4 - DOI
    1. Conti, D., Trubia, G., Buono, S., Di Nuovo, S., & Di Nuovo, A. (2019). Affect Recognition in Autism: A single case study on integrating a humanoid robot in a standard therapy. Qwerty-Open and Interdisciplinary Journal of Technology, Culture and Education, 14(2), 66–87. - DOI
    1. Costescu, C. A., Vanderborght, B., & David, D. O. (2014). The effects of robot-enhanced psychotherapy: A meta-analysis. Review of General Psychology, 18(2), 127–136. https://doi.org/10.1037/gpr0000007 - DOI
    1. Demetriou, E. A., DeMayo, M. M., & Guastella, A. J. (2019). Executive function in autism spectrum disorder: History, theoretical models, empirical findings, and potential as an endophenotype. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2019.00753 - DOI - PubMed - PMC
    1. Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249–262. https://doi.org/10.1016/j.rasd.2011.05.006 - DOI - PubMed - PMC
    1. Duradoni, M., Colombini, G., Russo, P. A., & Guazzini, A. (2021). Robotic Psychology: A PRISMA Systematic Review on Social-Robot-Based Interventions in Psychological Domains. Journal MDPI, 4(4), 664–697. https://doi.org/10.3390/j4040048 - DOI
    1. Gasser, G. (2021). The dawn of social robots: Anthropological and ethical issues. Minds and Machines, 31(3), 329–336. https://doi.org/10.1007/s11023-021-09572-9 - DOI
    1. Ghiglino, D., Chevalier, P., Floris, F., Priolo, T., & Wykowska, A. (2021). Follow the white robot: Efficacy of robot-assistive training for children with autism spectrum disorder. Research in Autism Spectrum Disorders, 86, 101822. https://doi.org/10.1016/j.rasd.2021.101822 - DOI
    1. Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research note. Journal of Child Psychology and Psychiatry, 38(5), 581–586. - DOI - PubMed
    1. Gubenko, A., Kirsch, C., Smilek, J. N., Lubart, T., & Houssemand, C. (2021). Educational Robotics and Robot Creativity: An Interdisciplinary Dialogue. Frontiers in Robotics and AI, 8, 178. https://doi.org/10.3389/frobt.2021.662030 - DOI
    1. Heidari, R., Alipour, S., Meghdari, A., & Shehni Yailagh, M. (2019). The Impact Of Social Robots Intervention On Improving The Executive Functions In Children With Autism Disorder. Studies in Medical Sciences, 30(9), 744–752.
    1. Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24(2), 189–233. https://doi.org/10.1016/j.dr.2004.01.001 - DOI
    1. Holeva, V., Nikopoulou, V. A., Papadopoulou, M., Vrochidou, E., Papakostas, G. A., & Kaburlasos, V. G. (2019). Toward robot-assisted psychosocial intervention for children with Autism Spectrum Disorder (ASD). International Conference on Social Robotics. https://doi.org/10.1007/978-3-030-35888-4 - DOI
    1. Huskens, B., Verschuur, R., Gillesen, J., Didden, R., & Barakova, E. (2013). Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. Developmental Neurorehabilitation, 16(5), 345–356. - DOI - PubMed
    1. Ismail, L. I., Verhoeven, T., Dambre, J., & Wyffels, F. (2019). Leveraging robotics research for children with autism: A review. International Journal of Social Robotics, 11(3), 389–410. https://doi.org/10.1007/s12369-018-0508-1 - DOI
    1. Jurek, L., Baltazar, M., Gulati, S., Novakovic, N., Núñez, M., Oakley, J., & O’Hagan, A. (2021). Response (minimum clinically relevant change) in ASD symptoms after an intervention according to CARS-2: Consensus from an expert elicitation procedure. European Child & Adolescent Psychiatry. https://doi.org/10.1007/s00787-021-01772-z - DOI
    1. Kaburlasos, V., Holeva, V., Dardani, C., Papadopoulou, M., Kechayas, P., Lytridis, C., Bazinas, C., Nikopoulou, V. A. (2020, June 3). A Feasibility Study to Evaluate the Application of a Robot-Assisted ASD Intervention in Greece. [Poster presentation]. International Society for Autism Research 2020, Virtual.
    1. Kim, S., Hirokawa, M., Matsuda, S., Funahashi, A., & Suzuki, K. (2021). Smiles as a signal of prosocial behaviors toward the robot in the therapeutic setting for children with autism spectrum disorder. Frontiers in Robotics and AI, 8, 599755. https://doi.org/10.3389/frobt.2021.599755 - DOI - PubMed - PMC
    1. Kouroupa, A., Laws, K. R., Irvine, K., Mengoni, S. E., Baird, A., & Sharma, S. (2022). The use of social robots with children and young people on the autism spectrum: A systematic review and meta-analysis. PLoS ONE, 17(6), e0269800. https://doi.org/10.1371/journal.pone.0269800 - DOI - PubMed - PMC
    1. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II (2nd edn.). Harcourt Assessment.
    1. Kumazaki, H., Muramatsu, T., Yoshikawa, Y., Matsumoto, Y., Ishiguro, H., Kikuchi, M., Sumiyoshi, T., & Mimura, M. (2020). Optimal robot for intervention for individuals with autism spectrum disorders. Psychiatry and Clinical Neurosciences, 74(11), 581–586. https://doi.org/10.1111/pcn.13132 - DOI - PubMed - PMC
    1. Leaf, J. B., Cihon, J. H., Leaf, R., McEachin, J., Liu, N., Russell, N., Unumb, L., Shapiro, S., & Khosrowshahi, D. (2021). Concerns About ABA-Based Intervention: An Evaluation and Recommendations. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-021-05137-y - DOI - PubMed - PMC
    1. Lebersfeld, J., Brasher, C. J., Clesi, C. D., Stevens, C. E., Biasini, F. J., & Hopkins, M. I. (2018). 2157 the socially animated machine (sam) robot: A social skills intervention for children with autism spectrum disorder. Journal of Clinical and Translational Science, 2(S1), 49–49. https://doi.org/10.1017/cts.2018.190 - DOI - PMC
    1. Leung, R. C., Vogan, V. M., Powell, T. L., Anagnostou, E., & Taylor, M. J. (2016). The role of executive functions in social impairment in Autism Spectrum Disorder. Child Neuropsychology, 22(3), 336–344. https://doi.org/10.1080/09297049.2015.1005066 - DOI - PubMed
    1. Li, Q., Liu, P., Yan, N., & Feng, T. (2020). Executive function training improves emotional competence for preschool children: The roles of inhibition control and working memory. Frontiers in Psychology, 11, 347. https://doi.org/10.3389/fpsyg.2020.00347 - DOI - PubMed - PMC
    1. Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2 - DOI
    1. Lytridis, C., Bazinas, C., Sidiropoulos, G., Papakostas, G. A., Kaburlasos, V. G., Nikopoulou, V. A., Holeva, V., & Evangeliou, A. (2020). Distance special education delivery by social robots. Electronics, 9(6), 1034. - DOI
    1. Lytridis, C., Kaburlasos, V. G., Bazinas, C., Papakostas, G. A., Sidiropoulos, G., Nikopoulou, V. A., Holeva, V., Papadopoulou, M., & Evangeliou, A. (2022). Behavioral Data Analysis of Robot-Assisted Autism Spectrum Disorder (ASD) Interventions Based on Lattice Computing Techniques. Sensors, 22(2), 621. https://doi.org/10.3390/s22020621 - DOI - PubMed - PMC
    1. Marino, F., Chilà, P., Sfrazzetto, S. T., Carrozza, C., Crimi, I., Failla, C., Busà, M., Bernava, G., Tartarisco, G., Vagni, D., Ruta, L., & Pioggia, G. (2020). Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 50(6), 1973–1987. https://doi.org/10.1007/s10803-019-03953-x - DOI - PubMed
    1. Manzi, F., Peretti, G., Di Dio, C., Cangelosi, A., Itakura, S., Kanda, T., Ishiguro, H., Massaro, D., & Marchetti, A. (2020). A robot is not worth another: Exploring children’s mental state attribution to different humanoid robots. Frontiers in Psychology, 11, 2011. https://doi.org/10.3389/fpsyg.2020.02011 - DOI - PubMed - PMC
    1. Miranda, A., Berenguer, C., Roselló, B., Baixauli, I., & Colomer, C. (2017). Social cognition in children with high-functioning autism spectrum disorder and attention-deficit/hyperactivity disorder. Associations with executive functions. Frontiers in Psychology, 8, 1035. - DOI - PubMed - PMC
    1. Roski, J., Hamilton, B. A., Chapman, W., Heffner, J., Trivedi, R., Del Fiol, G., Kukafka, R., Bleicher, P., Estiri, H., Klann, J., & Pierce, J. (2019). How Artificial Intelligence is changing health and health care. In M. Matheny, S. T. Israni, M. Ahmed, & D. Whicher (Eds.), Artificial intelligence in health care: The hope, the hype, the promise, the peril (pp. 59–88). National Academy of Medicine.
    1. Nikopoulou, V. A., Holeva, V., Kerasidou, M. D., Kechayas, P., Papadopoulou, M., Vrochidou, E., Papakostas, G. A., & Kaburlasos, V. G. (2020). Identifying linguistic cues: Towards developing robots with empathy in autism interventions. Journal of Clinical Medicine of Kazakhstan, 2(56), 27–33. - DOI
    1. Ogawa, Y., Itani, O., Jike, M., & Watanabe, N. (2021). Psychosocial Interventions for Employment of Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Review Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s40489-021-00285-4 - DOI
    1. Olde Dubbelink, L. M. E., & Geurts, H. M. (2017). Planning Skills in Autism Spectrum Disorder across the Lifespan: A Meta-Analysis and Meta-Regression. Journal Autism Developmental Disorder, 47, 1148–1165. https://doi.org/10.1007/s10803-016-3013-0 - DOI
    1. Ousley, O., & Cermak, T. (2014). Autism spectrum disorder: Defining dimensions and subgroups. Current Developmental Disorders Reports, 1(1), 20–28. https://doi.org/10.1007/s40474-013-0003-1 - DOI - PubMed
    1. Papakostas, G. A., Sidiropoulos, G. K., Papadopoulou, C. I., Vrochidou, E., Kaburlasos, V. G., Papadopoulou, M. T., Holeva, V., Nikopoulou, V. A., & Dalivigkas, N. (2021). Social Robots in Special Education: A Systematic Review. Electronics, 10(12), 1398. https://doi.org/10.3390/electronics10121398 - DOI
    1. Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., & Pioggia, G. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165–183. https://doi.org/10.1002/aur.1527 - DOI - PubMed
    1. Pinto Costa, A., Kirsten, L., Charpiot, L., & Steffgen, G. (2019). Mental health benefits of a robot-mediated emotional ability training for children with autism: An exploratory study. International Society for Autism Research. http://hdl.handle.net/10993/42945
    1. Pioggia, G., Sica, M. L., Ferro, M., Igliozzi, R., Muratori, F., Ahluwalia, A., & De Rossi, D. (2007). Human-robot interaction in autism: FACE, an android-based social therapy. International Workshop on Robot and Human Interactive Communication. https://doi.org/10.1109/ROMAN.2007.4415156 - DOI
    1. Politte, L. C., Howe, Y., Nowinski, L., Palumbo, M., & McDougle, C. J. (2015). Evidence-based treatments for autism spectrum disorder. Current Treatment Options in Psychiatry, 2(1), 38–56. https://doi.org/10.1007/s40501-015-0031-z - DOI
    1. Pop, C. A., Simut, R., Pintea, S., Saldien, J., Rusu, A., David, D., Vanderfaeillie, J., & lefeber, D., & Vanderborght, B. (2013). Can the social robot Probo help children with autism to identify situation-based emotions? A series of single case experiments. International Journal of Humanoid Robotics, 10(03), 1350025. https://doi.org/10.1142/S0219843613500254 - DOI
    1. Robinson, N. L., Cottier, T. V., & Kavanagh, D. J. (2019). Psychosocial health interventions by social robots: Systematic review of randomized controlled trials. Journal of Medical Internet Research, 21(5), e13203. https://doi.org/10.2196/13203 - DOI - PubMed - PMC
    1. Rogers, S. J., & Vismara, L. (2014). Interventions for infants and toddlers at risk for autism spectrum disorder. In F. R. Volkmar, R. Paul, S. J. Rogers, & K. A. Pelphrey (Eds.), Handbook of autism and pervasive developmental disorders: Diagnosis, development, and brain mechanisms (pp. 737–770). Wiley.
    1. Rosello, B., Berenguer, C., Baixauli, I., García, R., & Miranda, A. (2020). Theory of mind profiles in children with autism spectrum disorder: Adaptive/social skills and pragmatic competence. Frontiers in Psychology, 11, 1. - DOI
    1. Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised. Western Psychological Services. https://doi.org/10.1007/978-1-4419-1698-3_894 - DOI
    1. Salimi, Z., Jenabi, E., & Bashirian, S. (2021). Are social robots ready yet to be used in care and therapy of autism spectrum disorder: A systematic review of randomized controlled trials. Neuroscience & Biobehavioral Reviews, 129, 1–16. https://doi.org/10.1016/j.neubiorev.2021.04.009 - DOI
    1. Salvador, M., Marsh, A. S., Gutierrez, A., & Mahoor, M. H. (2016). Development of an ABA autism intervention delivered by a humanoid robot. International Conference on Social Robotics. https://doi.org/10.1007/978-3-319-47437-3_54 - DOI
    1. Schadenberg, B. R., Reidsma, D., Heylen, D. K., & Evers, V. (2020). Differences in spontaneous interactions of autistic children in an interaction with an adult and humanoid robot. Frontiers in Robotics and AI, 7, 28. https://doi.org/10.3389/frobt.2020.00028 - DOI - PubMed - PMC
    1. Schopler, E., Van Bourgondien, M. E., Wellman, G. J., & Love, S. R. (2010). The Childhood Autism Rating Scale (2nd edn.) (CARS2). Western Psychological Services.
    1. Seida, J. K., Ospina, M. B., Karkhaneh, M., Hartling, L., Smith, V., & Clark, B. (2009). Systematic reviews of psychosocial interventions for autism: An umbrella review. Developmental Medicine & Child Neurology, 51(2), 95–104. https://doi.org/10.1111/j.1469-8749.2008.03211.x - DOI
    1. Soares, F. O., Costa, S. C., Santos, C. P., Pereira, A. P. S., Hiolle, A. R., & Silva, V. (2019). Socio-emotional development in high functioning children with Autism Spectrum Disorders using a humanoid robot. Interaction Studies, 20(2), 205–233. https://doi.org/10.1075/is.15003.cos - DOI
    1. Srinivasan, S. M., Park, I. K., Neelly, L. B., & Bhat, A. N. (2015). A comparison of the effects of rhythm and robotic interventions on repetitive behaviors and affective states of children with Autism Spectrum Disorder (ASD). Research in Autism Spectrum Disorders, 18, 51–63. https://doi.org/10.1016/j.rasd.2015.07.004 - DOI - PubMed - PMC
    1. Syriopoulou-Delli, C. K., & Gkiolnta, E. (2020). Review of assistive technology in the training of children with autism spectrum disorders. International Journal of Developmental Disabilities, 68(2), 73–85. https://doi.org/10.1080/20473869.2019.1706333 - DOI - PubMed - PMC
    1. van den Berk-Smeekens, I., van Dongen-Boomsma, M., De Korte, M. W., Den Boer, J. C., Oosterling, I. J., Peters-Scheffer, N. C., Buitelaar, J. K., Barakova, E. I., Lourens, T., Staal, W. G., & Glennon, J. C. (2020). Adherence and acceptability of a robot-assisted Pivotal Response Treatment protocol for children with autism spectrum disorder. Scientific Reports, 10(1), 8110. https://doi.org/10.1038/s41598-020-65048-3 - DOI - PubMed - PMC
    1. Wechsler, D. (2014). Wechsler intelligence scale for children (5th ed.). NCS Pearson.
    1. Wechsler, D. (2012). Wechsler Preschool and Primary Scale of Intelligence (4th ed.). NCS Pearson.
    1. Weiss, J. A., Thomson, K., Burnham Riosa, P., Albaum, C., Chan, V., Maughan, A., Tablon, P., & Black, K. (2018). A randomized waitlist-controlled trial of cognitive behavior therapy to improve emotion regulation in children with autism. Journal of Child Psychology and Psychiatry, 59(11), 1180–1191. https://doi.org/10.1111/jcpp.12915 - DOI - PubMed
    1. Yuan, F., Klavon, E., Liu, Z., Lopez, R. P., & Zhao, X. (2021). A systematic review of robotic rehabilitation for cognitive training. Frontiers in Robotics and AI, 8, 105. https://doi.org/10.3389/frobt.2021.605715 - DOI
    1. Yun, S. S., Choi, J., Park, S. K., Bong, G. Y., & Yoo, H. (2017). Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system. Autism Research, 10(7), 1306–1323. https://doi.org/10.1002/aur.1778 - DOI - PubMed
    1. Zhang, Y., Song, W., Tan, Z., Zhu, H., Wang, Y., Lam, C. M., Wang, Y., Hoi, P. S., Lu, H., Chan, B. S., Chen., J., & Yi, L. (2019). Could social robots facilitate children with autism spectrum disorders in learning distrust and deception? Computers in Human Behavior, 98, 140–149. https://doi.org/10.1016/j.chb.2019.04.008 - DOI

16 août 2019

Aromathérapie à la bergamote pour l'anxiété provoquée par le cabinet médical chez les enfants avec un diagnostic de "trouble du spectre de l'autisme": essai clinique randomisé, contrôlé et en aveugle

Aperçu: G.M.
Cet essai clinique randomisé à l'aveugle a évalué les effets de l'aromathérapie sur l'anxiété provoquée par le cabinet médical chez les enfants avec un diagnostic de "trouble du spectre de l'autisme" . Les patients en attente de visites au cabinet ont été randomisés dans un groupe d'aromathérapie et un groupe témoin. 
Après ajustement pour les scores de base, il n'y avait pas de différence significative entre les 2 groupes.

2019 Sep/Oct;33(5):285-294. doi: 10.1097/HNP.0000000000000341.

Bergamot Aromatherapy for Medical Office-Induced Anxiety Among Children With an Autism Spectrum Disorder: A Randomized, Controlled, Blinded Clinical Trial

Author information

1
Franklin Institute of Wellness, Franklin, Tennessee (Dr Hawkins); and Middle Tennessee State University, Murfreesboro (Drs Weatherby, Wrye, and Ujcich Ward).

Abstract

This randomized, blinded clinical trial evaluated the effects of aromatherapy on medical office-induced anxiety in children with an autism spectrum disorder. Patients awaiting office visits were randomized into an aromatherapy group and a control group. After adjusting for baseline scores, there was no significant difference between the 2 groups.
PMID:31415008
DOI:10.1097/HNP.0000000000000341

10 janvier 2018

Améliorer les interactions au cours des routines quotidiennes: Un essai contrôlé randomisé d'un tutoriel en ligne pour les parents de jeunes enfants avec un diagnostic de TSA

Aperçu: G.M.
Ce tutoriel en ligne a aidé les parents d'enfants avec un diagnostic de TSA à utiliser des stratégies éprouvées pour améliorer la participation de leur enfant à la routine quotidienne à la maison. Les parents qui ont utilisé le didacticiel ont signalé moins de stress parental, se sentaient mieux à propos de leurs compétences parentales et ont signalé de meilleures interactions sociales de l'enfant par rapport aux parents qui n'ont pas utilisé le tutoriel. Ce tutoriel peut être particulièrement utile pour les familles qui ont un accès limité aux services, car il peut être réalisé à domicile.

Autism Res. 2018 Jan 7. doi: 10.1002/aur.1919.

Enhancing interactions during daily routines: A randomized controlled trial of a web-based tutorial for parents of young children with ASD

Author information

1
Department of Psychology, University of Washington, Seattle, Washington.
2
Center for Psychological Consultation, Madison, Wisconsin.
3
Vanderbilt Kennedy Center Treatment and Research Institute for Autism Spectrum Disorders, (TRIAD), Vanderbilt University Medical Center, Nashville, Tennessee.

Abstract

Children with Autism Spectrum Disorder (ASD) often experience difficulty participating in everyday home routines, such as bed time or bath time. This randomized controlled trial examined the efficacy of an interactive, web-based parenting tutorial for improving children's engagement in daily routines (i.e., proximal outcomes) as well improving children's social communication and parenting efficacy and stress (i.e., broad outcomes). Parents of children with ASD between 18 and 60 months were randomly assigned to the Tutorial group (n = 52) or the Control group (n = 52). All parents completed questionnaires at baseline (T1), 1 month after T1 (T2; post-tutorial completion), and 2 months after T1 (T3). Relative to the Control group, parents in the Tutorial group reported significantly higher use of evidence-based instructional strategies and higher levels of child engagement during routines at T2 and T3. In addition, parents in the Tutorial group reported significantly lower parenting stress and higher parenting efficacy at T3, as well as higher ratings of child social communication at T2 and T3, compared to the Control group. Parents reported being highly satisfied with both the clinical content and technical aspects of the tutorial. These improvements in both proximal and broad parent-child outcomes suggest that this tutorial may be a promising and accessible way for empowering some parents and improving parent-child interactions. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.

LAY SUMMARY:

This web-based tutorial helped parents of children with ASD use proven strategies to improve their child's participation in daily routines at home. Parents who used the tutorial reported less parenting stress, felt better about their parenting skills, and reported better child social interactions compared to parents who did not use the tutorial. This tutorial may be especially helpful for families who have limited access to services, as it can be completed at home.
PMID:29316336
DOI:10.1002/aur.1919

30 décembre 2017

Évaluation du risque de biais dans les essais contrôlés randomisés pour le "trouble du spectre de l'autisme"

Aperçu: G.M.
L'objectif de la recherche était de déterminer les indicateurs de validité et de fiabilité de construction de l'outil Cochrane de risque de biais (RoB) dans le contexte des essais cliniques randomisés (ECR) sur les "troubles du spectre de l'autisme" (TSA).L'analyse factorielle confirmatoire a été utilisée pour évaluer un modèle unidimensionnel composé de 9 indicateurs catégoriels RoB évalués dans 94 ECR traitant des interventions pour les TSA.Seuls cinq des neuf articles originaux de RoB ont renvoyé des indices d'ajustement et ont donc été retenus dans l'analyse. Un seul de ces cinq avait des charges factorielles très élevées. Les quatre indicateurs restants présentaient plus d'erreur de mesure que la variance commune avec le facteur latent RoB. Ensemble, les cinq indicateurs ont montré une fiabilité médiocre (ω = 0,687; IC 95%: 0,613-0,761).Bien que le modèle Cochrane de RoB pour les TSA présentait de bons indices d'ajustement, la majorité des items ont plus de variance résiduelle que la variance commune et, par conséquent, n'ont pas capturé adéquatement le RoB dans les essais d'intervention TSA.


Front Psychiatry. 2017 Nov 29;8:265. doi: 10.3389/fpsyt.2017.00265. eCollection 2017.

Assessing Risk of Bias in Randomized Controlled Trials for Autism Spectrum Disorder

Author information

1
Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.
2
Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, United States.
3
School of Medicine, Emory University, Atlanta, GA, United States.

Abstract

Aim:

To determine construct validity and reliability indicators of the Cochrane risk of bias (RoB) tool in the context of randomized clinical trials (RCTs) for autism spectrum disorder (ASD).

Methods:

Confirmatory factor analysis was used to evaluate a unidimensional model consisting of 9 RoB categorical indicators evaluated across 94 RCTs addressing interventions for ASD.

Results:

Only five of the nine original RoB items returned good fit indices and so were retained in the analysis. Only one of this five had very high factor loadings. The remaining four indicators had more measurement error than common variance with the RoB latent factor. Together, the five indicators showed poor reliability (ω = 0.687; 95% CI: 0.613-0.761).

Conclusion:

Although the Cochrane model of RoB for ASD exhibited good fit indices, the majorities of the items have more residual variance than common variance and, therefore, did not adequately capture the RoB in ASD intervention trials.
PMID:29238311
PMCID:PMC5712530
DOI:10.3389/fpsyt.2017.00265