La communication sociale (SC) et les comportements répétitifs restreints (CRR) sont des domaines de symptômes diagnostiques de l'autisme. La gravité de la SC et du CRRpeut différer considérablement au sein et entre les individus et peut être étayée par différents circuits neuronaux et mécanismes génétiques. La modélisation de l'équilibre SC-RRB pourrait aider à identifier comment les circuits neuronaux et les mécanismes génétiques correspondent à une telle hétérogénéité phénotypique.
Ici, nous avons développé un modèle de stratification phénotypique qui permet des prédictions de sous-types SC = CRR, SC> CRR et CRR> SC très précises (97-99%) hors échantillon. En appliquant ce modèle aux données IRMf à l'état de repos de l'ensemble de données EU-AIMS LEAP (n = 509), nous constatons que si les sous-types phénotypiques partagent de nombreux points communs en termes de connectivité fonctionnelle intrinsèque, ils montrent également des différences réplicables au sein de certains réseaux par rapport à un groupe au développement typique (DT). Plus précisément, le réseau somatomoteur est hypoconnecté avec les circuits périsylviens en SC> CRR et les circuits d'association visuelle en SC = CRR. Le sous-type SC = CRR montre une hyperconnectivité entre le moteur médial et les circuits de saillance antérieure. Les gènes qui sont fortement exprimés dans ces réseaux montrent un modèle d'enrichissement différentiel avec des gènes connus associés à l'autisme, indiquant que ces circuits sont affectés par différents mécanismes génomiques associés à l'autisme.
Ces résultats suggèrent que les sous-types de déséquilibre SC-CRR partagent de nombreux points communs, mais expriment également des différences subtiles dans les circuits neuronaux fonctionnels et les fondements génomiques derrière ces circuits.
. 2021 May 14;4(1):574. doi: 10.1038/s42003-021-02015-2.
Imbalanced social-communicative and restricted repetitive behavior
subtypes of autism spectrum disorder exhibit different neural circuitry
Social-communication (SC) and restricted repetitive behaviors
(RRB) are autism diagnostic symptom domains. SC and RRB severity can
markedly differ within and between individuals and may be underpinned by
different neural circuitry and genetic mechanisms. Modeling SC-RRB
balance could help identify how neural circuitry and genetic mechanisms
map onto such phenotypic heterogeneity. Here, we developed a phenotypic
stratification model that makes highly accurate (97-99%) out-of-sample
SC = RRB, SC > RRB, and RRB > SC subtype predictions. Applying
this model to resting state fMRI data from the EU-AIMS LEAP dataset (n =
509), we find that while the phenotypic subtypes share many
commonalities in terms of intrinsic functional connectivity, they also
show replicable differences within some networks compared to a
typically-developing group (TD). Specifically, the somatomotor network
is hypoconnected with perisylvian circuitry in SC > RRB and visual
association circuitry in SC = RRB. The SC = RRB subtype show
hyperconnectivity between medial motor and anterior salience circuitry.
Genes that are highly expressed within these networks show a
differential enrichment pattern with known autism-associated genes,
indicating that such circuits are affected by differing
autism-associated genomic mechanisms. These results suggest that SC-RRB
imbalance subtypes share many commonalities, but also express subtle
differences in functional neural circuitry and the genomic underpinnings
behind such circuitry.
References
Lai, M.-C. & Lombardo, M. V. Baron-Cohen S. Autism. Lancet 383, 896–910 (2014).
-
PubMed
-
DOI
-
PMC
Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 6, 5 (2020).
-
PubMed
-
DOI
-
PMC
Lombardo, M. V., Lai, M.-C. & Baron-Cohen, S. Big data
approaches to decomposing heterogeneity across the autism spectrum. Mol.
Psychiatry 24, 1435–1450 (2019).
-
PubMed
-
PMC
-
DOI
Happé, F. & Ronald, A. The ‘fractionable autism triad’: a
review of evidence from behavioural, genetic, cognitive and neural
research. Neuropsychol. Rev. 18, 287–304 (2008).
-
PubMed
-
DOI
-
PMC
Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu Rev. Neurosci. 31, 359–387 (2008).
-
PubMed
-
DOI
-
PMC
Langen, M., Durston, S., Kas, M. J. H., van Engeland, H.
& Staal, W. G. The neurobiology of repetitive behavior: …and men.
Neurosci. Biobehav. Rev. 35, 356–365 (2011).
-
PubMed
-
DOI
-
PMC
Kennedy, D. P. & Adolphs, R. The social brain in
psychiatric and neurological disorders. Trends Cogn. Sci. (Regul. Ed.)
16, 559–572 (2012).
-
DOI
Ronald, A., Happe, F. & Plomin, R. The genetic
relationship between individual differences in social and nonsocial
behaviours characteristic of autism. Developmental. Sci. 8, 444–458
(2005).
-
DOI
Ronald, A., Happé, F., Price, T. S., Baron-Cohen, S. &
Plomin, R. Phenotypic and genetic overlap between autistic traits at the
extremes of the general population. J. Am. Acad. Child Adolesc.
Psychiatry 45, 1206–1214 (2006).
-
PubMed
-
DOI
-
PMC
Ronald, A. et al. Genetic heterogeneity between the three
components of the autism spectrum: a twin study. J. Am. Acad. Child
Adolesc. Psychiatry 45, 691–699 (2006).
-
PubMed
-
DOI
Warrier, V. et al. Social and non-social autism symptoms and
trait domains are genetically dissociable. Commun. Biol. 2, 328 (2019).
-
PubMed
-
PMC
-
DOI
Georgiades, S. et al. Investigating phenotypic heterogeneity
in children with autism spectrum disorder: a factor mixture modeling
approach. J. Child Psychol. Psychiatry 54, 206–215 (2013).
-
PubMed
-
DOI
-
PMC
Hu, V. W. & Steinberg, M. E. Novel clustering of items
from the Autism Diagnostic Interview-Revised to define phenotypes within
autism spectrum disorders. Autism Res. 2, 67–77 (2009).
-
PubMed
-
PMC
-
DOI
Cholemkery, H., Medda, J., Lempp, T. & Freitag, C. M.
Classifying autism spectrum disorders by ADI-R: subtypes or severity
gradient? J. Autism Dev. Disord. 46, 2327–2339 (2016).
-
PubMed
-
DOI
-
PMC
Happé, F. & Frith, U. Annual research review: looking
back to look forward—changes in the concept of autism and implications
for future research. J. Child Psychol. Psychiatry 61, 218–232 (2020).
-
PubMed
-
DOI
-
PMC
Richiardi, J. et al. BRAIN NETWORKS. Correlated gene
expression supports synchronous activity in brain networks. Science 348,
1241–1244 (2015).
-
PubMed
-
PMC
-
DOI
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).
-
PubMed
-
PMC
-
DOI
Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D.
Bridging the gap between connectome and transcriptome. Trends Cogn. Sci.
(Regul. Ed.) 23, 34–50 (2019).
-
DOI
Charman, T. et al. The EU-AIMS Longitudinal European Autism
Project (LEAP): clinical characterisation. Mol. Autism 8, 27 (2017).
-
PubMed
-
PMC
-
DOI
Loth, E. et al. The EU-AIMS Longitudinal European Autism
Project (LEAP): design and methodologies to identify and validate
stratification biomarkers for autism spectrum disorders. Mol. Autism 8,
24 (2017).
-
PubMed
-
PMC
-
DOI
Oldehinkel, M. et al. Altered connectivity between
cerebellum, visual, and sensory-motor networks in autism spectrum
disorder: results from the EU-AIMS Longitudinal European Autism Project.
Biol. Psychiatry.: Cogn. Neurosci. Neuroimaging 4, 260–270 (2019).
Hawrylycz, M. J. et al. An anatomically comprehensive atlas
of the adult human brain transcriptome. Nature 489, 391–399 (2012).
-
PubMed
-
PMC
-
DOI
Gorgolewski, K. J. et al. Tight fitting genes: finding
relations between statistical maps and gene expression patterns. F1000
Posters 5, 1607 (2014).
Romero-Garcia, R., Warrier, V., Bullmore, E. T.,
Baron-Cohen, S. & Bethlehem, R. A. I. Synaptic and transcriptionally
downregulated genes are associated with cortical thickness differences
in autism. Mol. Psychiatry 24, 1053–1064 (2019).
-
PubMed
-
DOI
Langfelder, P., Zhang, B. & Horvath, S. Defining
clusters from a hierarchical cluster tree: the Dynamic Tree Cut package
for R. Bioinformatics 24, 719–720 (2008).
-
PubMed
-
DOI
Lombardo, M. V. et al. Unsupervised data-driven
stratification of mentalizing heterogeneity in autism. Sci. Rep. 6,
35333 (2016).
-
PubMed
-
PMC
-
DOI
Chen, C. P. et al. Diagnostic classification of intrinsic
functional connectivity highlights somatosensory, default mode, and
visual regions in autism. NeuroImage: Clin. 8, 238–245 (2015).
-
DOI
Holiga, Š. et al. Patients with autism spectrum disorders
display reproducible functional connectivity alterations. Sci. Transl.
Med. 11, eaat9223 (2019).
-
PubMed
-
DOI
Lombardo, M. V. et al. Different functional neural
substrates for good and poor language outcome in autism. Neuron 86,
567–577 (2015).
-
PubMed
-
PMC
-
DOI
Lombardo, M. V. et al. Large-scale associations between the
leukocyte transcriptome and BOLD responses to speech differ in autism
early language outcome subtypes. Nat. Neurosci. 21, 1680–1688 (2018).
-
PubMed
-
PMC
-
DOI
Redcay, E. & Courchesne, E. Deviant functional magnetic
resonance imaging patterns of brain activity to speech in 2–3-year-old
children with autism spectrum disorder. Biol. Psychiatry 64, 589–598
(2008).
-
PubMed
-
PMC
-
DOI
Eyler, L. T., Pierce, K. & Courchesne, E. A failure of
left temporal cortex to specialize for language is an early emerging and
fundamental property of autism. Brain 135, 949–960 (2012).
-
PubMed
-
PMC
-
DOI
Dinstein, I. et al. Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218–1225 (2011).
-
PubMed
-
PMC
-
DOI
Adolphs, R., Damasio, H., Tranel, D., Cooper, G. &
Damasio, A. R. A role for somatosensory cortices in the visual
recognition of emotion as revealed by three-dimensional lesion mapping.
J. Neurosci. 20, 2683–2690 (2000).
-
PubMed
-
PMC
-
DOI
Keysers, C., Kaas, J. H. & Gazzola, V. Somatosensation
in social perception. Nat. Rev. Neurosci. 11, 417–428 (2010).
-
PubMed
-
DOI
-
PMC
Stevenson, R. A. et al. Multisensory temporal integration in
autism spectrum disorders. J. Neurosci. 34, 691–697 (2014).
-
PubMed
-
PMC
-
DOI
Foss-Feig, J. H. et al. An extended multisensory temporal
binding window in autism spectrum disorders. Exp. Brain Res. 203,
381–389 (2010).
-
PubMed
-
PMC
-
DOI
Russo, N. et al. Multisensory processing in children with
autism: high-density electrical mapping of auditory-somatosensory
integration. Autism Res. 3, 253–267 (2010).
-
PubMed
-
DOI
-
PMC
Crippa, A., Forti, S., Perego, P. & Molteni, M. Eye-hand
coordination in children with high functioning autism and Asperger’s
disorder using a gap-overlap paradigm. J. Autism Dev. Disord. 43,
841–850 (2013).
-
PubMed
-
DOI
Dowd, A. M., McGinley, J. L., Taffe, J. R. & Rinehart,
N. J. Do planning and visual integration difficulties underpin motor
dysfunction in autism? A kinematic study of young children with autism.
J. Autism Dev. Disord. 42, 1539–1548 (2012).
-
PubMed
-
DOI
-
PMC
Glazebrook, C., Gonzalez, D., Hansen, S. & Elliott, D.
The role of vision for online control of manual aiming movements in
persons with autism spectrum disorders. Autism 13, 411–433 (2009).
-
PubMed
-
DOI
-
PMC
Marko, M. K. et al. Behavioural and neural basis of
anomalous motor learning in children with autism. Brain 138, 784–797
(2015).
-
PubMed
-
PMC
-
DOI
Nebel, M. B. et al. Intrinsic visual-motor synchrony
correlates with social deficits in Autism. Biol. Psychiatry 79, 633–641
(2016).
-
PubMed
-
DOI
-
PMC
Bhat, A. N., Landa, R. J. & Galloway, J. C. Current
perspectives on motor functioning in infants, children, and adults with
autism spectrum disorders. Phys. Ther. 91, 1116–1129 (2011).
-
PubMed
-
DOI
-
PMC
Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N. &
Cauraugh, J. H. Motor coordination in autism spectrum disorders: a
synthesis and meta-analysis. J. Autism Dev. Disord. 40, 1227–1240
(2010).
-
PubMed
-
DOI
-
PMC
Green, D. et al. Impairment in movement skills of children
with autistic spectrum disorders. Dev. Med. Child Neurol. 51, 311–316
(2009).
-
PubMed
-
DOI
-
PMC
Uddin, L. Q. et al. Salience network–based classification
and prediction of symptom severity in children with Autism. JAMA
Psychiatry 70, 869 (2013).
-
PubMed
-
PMC
-
DOI
Green, S. A., Hernandez, L., Bookheimer, S. Y. &
Dapretto, M. Salience network connectivity in Autism is related to brain
and behavioral markers of sensory overresponsivity. J. Am. Acad. Child
Adolesc. Psychiatry 55, 618–626.e1 (2016).
-
PubMed
-
PMC
-
DOI
Di Martino, A. et al. The autism brain imaging data
exchange: towards a large-scale evaluation of the intrinsic brain
architecture in autism. Mol. Psychiatry 19, 659–667 (2014).
-
PubMed
-
DOI
-
PMC
Rubenstein, J. L. R. & Merzenich, M. M. Model of autism:
increased ratio of excitation/inhibition in key neural systems. Genes
Brain Behav. 2, 255–267 (2003).
-
PubMed
-
PMC
-
DOI
Sohal, V. S. & Rubenstein, J. L. R.
Excitation-inhibition balance as a framework for investigating
mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257
(2019).
-
PubMed
-
PMC
-
DOI
Velmeshev, D. et al. Single-cell genomics identifies cell
type–specific molecular changes in autism. Science 364, 685–689 (2019).
-
PubMed
-
PMC
-
DOI
Tang, S. et al. Reconciling dimensional and categorical
models of autism heterogeneity: a brain connectomics and behavioral
study. Biol. Psychiatry 87, 1071–1082 (2020).
-
PubMed
-
DOI
Zerbi V. et al. Brain mapping across 16 autism mouse models
reveals a spectrum of functional connectivity subtypes. Neuroscience https://doi.org/10.1101/2020.10.15.340588 (2020).
Lord, C., Bishop, S. & Anderson, D. Developmental
trajectories as autism phenotypes. Am. J. Med. Genet. C. Semin. Med.
Genet. 169, 198–208 (2015).
-
PubMed
-
PMC
-
DOI
Georgiades, S., Bishop, S. L. & Frazier, T. Editorial
perspective: longitudinal research in autism—introducing the concept of
‘chronogeneity’. J. Child Psychol. Psychiatry 58, 634–636 (2017).
-
PubMed
-
DOI
Kim, S. H. et al. Variability in Autism symptom trajectories
using repeated observations from 14 to 36 months of age. J. Am. Acad.
Child Adolesc. Psychiatry 57, 837–848.e2 (2018).
-
PubMed
-
PMC
-
DOI
Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic
interview-revised: a revised version of a diagnostic interview for
caregivers of individuals with possible pervasive developmental
disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
-
PubMed
-
DOI
-
PMC
Huerta, M., Bishop, S. L., Duncan, A., Hus, V. & Lord,
C. Application of DSM-5 criteria for autism spectrum disorder to three
samples of children with DSM-IV diagnoses of pervasive developmental
disorders. Am. J. Psychiatry 169, 1056–1064 (2012).
-
PubMed
-
PMC
-
DOI
Charrad M., Ghazzali N., Boiteau V., Niknafs A. NbClust: An R
package for determining the relevant number of clusters in a data set.
J. Stat. Soft. 61, https://doi.org/10.18637/jss.v061.i06 (2014).
Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M. &
Bandettini, P. A. Differentiating BOLD and non-BOLD signals in fMRI time
series using multi-echo EPI. Neuroimage 60, 1759–1770 (2012).
-
PubMed
-
DOI
Kundu, P. et al. Multi-echo fMRI: a review of applications
in fMRI denoising and analysis of BOLD signals. Neuroimage 154, 59–80
(2017).
-
PubMed
-
DOI
Posse, S. et al. Enhancement of BOLD-contrast sensitivity by
single-shot multi-echo functional MR imaging. Magn. Reson. Med. 42,
87–97 (1999).
-
PubMed
-
DOI
Kundu, P. et al. Integrated strategy for improving
functional connectivity mapping using multiecho fMRI. Proc. Natl Acad.
Sci. U.S.A 110, 16187–16192 (2013).
-
PubMed
-
PMC
-
DOI
Lombardo, M. V. et al. Improving effect size estimation and
statistical power with multi-echo fMRI and its impact on understanding
the neural systems supporting mentalizing. Neuroimage 142, 55–66 (2016).
-
PubMed
-
PMC
-
DOI
Griffanti, L. et al. Hand classification of fMRI ICA noise components. Neuroimage 154, 188–205 (2017).
-
PubMed
-
PMC
-
DOI
Smith, S. M. et al. Functional connectomics from
resting-state fMRI. Trends Cogn. Sci. (Regul. Ed.) 17, 666–682 (2013).
-
DOI
Smith, S. M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011).
-
PubMed
-
DOI
Marrelec, G. et al. Partial correlation for functional brain
interactivity investigation in functional MRI. Neuroimage 32, 228–237
(2006).
-
PubMed
-
DOI
Verhagen, J. & Wagenmakers, E.-J. Bayesian tests to
quantify the result of a replication attempt. J. Exp. Psychol. Gen. 143,
1457–1475 (2014).
-
PubMed
-
DOI
-
PMC
Satterstrom F. K. et al. Large-scale exome sequencing study
implicates both developmental and functional changes in the neurobiology
of autism. Cell https://doi.org/10.1016/j.cell.2019.12.036 (2020).
Gandal, M. J. et al. Transcriptome-wide isoform-level
dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362,
eaat8127 (2018).
-
PubMed
-
PMC
-
DOI
Parikshak, N. N. et al. Genome-wide changes in lncRNA,
splicing, and regional gene expression patterns in autism. Nature 540,
423–427 (2016).
-
PubMed
-
PMC
-
DOI