Affichage des articles dont le libellé est microbiote. Afficher tous les articles
Affichage des articles dont le libellé est microbiote. Afficher tous les articles

05 mai 2021

Une méta-analyse du microbiote intestinal chez les enfants autistes

Aperçu: G.M.

Des études antérieures ont rapporté une dysbiose dans le microbiote intestinal (MI) d'enfants avec un diagnostic du "trouble du spectre de l'autisme" (dTSA), qui peut être un facteur déterminant sur le développement de l'enfant à travers l'axe microbiote-intestin-cerveau. Cependant, on ne sait pas s'il existe un groupe spécifique de bactéries dysbiotiques dans les TSA. 


Le but de cette étude était de réaliser une méta-analyse sur les études qui analysent le MI chez les enfants avec un dTSA. 18 études remplissaient nos critères de sélection. 

Nos résultats ont montré une plus faible abondance relative de Streptococcus (SMD + = - 0,999; IC à 95% - 1,549, - 0,449) et de genres Bifidobacterium (SMD + = - 0,513; IC à 95% - 0,953, - 0,073) chez les enfants avec un dTSA. Dans l'ensemble, les genres Bifidobacterium sont impliqués. Cependant, les différences constatées entre les études sont attribuées à des facteurs tels que le biais de déclaration.

A Meta-analysis of Gut Microbiota in Children with Autism

Affiliations

Abstract

Previous studies have reported dysbiosis in the gut microbiota (GM) of children with autism spectrum disorders (ASD), which may be a determining factor on child development through the microbiota-gut-brain axis. However, it is not clear if there is a specific group of dysbiotic bacteria in ASD. The aim of this study was to carry out a meta-analysis on the studies that analyze GM in children with ASD. 18 studies fulfilled our selection criteria. Our results showed a lower relative abundance of Streptococcus (SMD+ = - 0.999; 95% CI - 1.549, - 0.449) and Bifidobacterium genera (SMD+ = - 0.513; 95% CI - 0.953, - 0.073) in children with ASD. Overall, the Bifidobacterium genera is involved. However, differences found between studies are attributed to factors such as reporting bias.

Keywords: Autism spectrum disorders (ASD); Gut microbiota; Meta-analysis; Microbiota-gut-brain axis; Systematic review.

References

    1. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11(22), 1–13. https://doi.org/10.1186/1471-230x-11-22 . - DOI
    1. Andreo-Martínez, P., García-Martínez, N., Sánchez-Samper, E. P., & Martínez-González, A. E. (2019). An approach to gut microbiota profile in children with autism spectrum disorder. Environmental Microbiology Reports, 12(2), 115–135. https://doi.org/10.1111/1758-2229.12810 . - DOI - PubMed
    1. APA. (2013). American Psychiatric Association. Autism spectrum disorder. In Diagnostic and statistical manual of mental disorders, 5 Eds (DSM-5). American Psychiatric Publishing.
    1. Baj, J., Sitarz, E., Forma, A., Wróblewska, K., & Karakuła-Juchnowicz, H. (2020). Alterations in the nervous system and gut microbiota after β-hemolytic Streptococcus group A infection—Characteristics and diagnostic criteria of PANDAS recognition. International Journal of Molecular Sciences, 21(4), 1476. https://doi.org/10.3390/ijms21041476 . - DOI - PMC
    1. Bonnet-Brilhault, F., Rajerison, T. A., Paillet, C., Guimard-Brunault, M., Saby, A., Ponson, L., Tripi, G., Malvy, J., & Roux, S. (2018). Autism is a prenatal disorder: Evidence from late gestation brain overgrowth. Autism Research, 11(12), 1635–1642. https://doi.org/10.1002/aur.2036 . - DOI - PubMed
    1. Borenstein, M. (2019). Common mistakes in meta-analysis and how to avoid them. Englewood, NJ: Biostat Inc.
    1. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. - DOI
    1. Bridgemohan, C., Cochran, D. M., Howe, Y. J., Pawlowski, K., Zimmerman, A. W., Anderson, G. M., Choueiri, R., Sices, L., Miller, K. J., Ultmann, M., & Helt, J. (2019). Investigating potential biomarkers in autism spectrum disorder. Frontiers in Integrative Neuroscience, 13, 31. https://doi.org/10.3389/fnint.2019.00031 . - DOI - PubMed - PMC
    1. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 12 Lawrence Erlbaum Associates Inc.
    1. Cooper, H., Hedges, L. V., & Valentine, J. C. (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation. - DOI
    1. Coretti, L., Paparo, L., Riccio, M. P., Amato, F., Cuomo, M., Natale, A., Borrelli, L., Corrado, G., De Caro, C., Comegna, M., & Buommino, E. (2018). Gut microbiota features in young children with autism spectrum disorders. Frontiers in Microbiology, 9, 3146. https://doi.org/10.3389/fmicb.2018.03146 . - DOI - PubMed - PMC
    1. Da Silva, H. D., & Winkelströter, L. K. (2019). Universal gestational screening for Streptococcus agalactiae colonization and neonatal infection—A systematic review and meta-analysis. Journal of Infection and Public Health, 12(4), 479–481. https://doi.org/10.1016/j.jiph.2019.03.004 . - DOI - PubMed
    1. Dall’Aglio, L., Muka, T., Cecil, C. A. M., Bramer, W. M., Verbiest, M., Nano, J., Hidalgo, A. C., Franco, O. H., & Tiemeier, H. (2018). The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 94, 17–30. https://doi.org/10.1016/j.neubiorev.2018.07.011 . - DOI
    1. De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., Cristofori, F., Guerzoni, M. E., Gobbetti, M., & Francavilla, R. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PloS One, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993 . - DOI - PubMed - PMC
    1. Diaz Heijtz, R. (2016). Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Seminars in Fetal and Neonatal Medicine, 21(6), 410–417. https://doi.org/10.1016/j.siny.2016.04.012 . - DOI - PubMed
    1. Ding, H. T., Taur, Y., & Walkup, J. T. (2017). Gut microbiota and autism: Key concepts and findings. Journal of Autism and Developmental Disorders, 47(2), 480–489. https://doi.org/10.1007/s10803-016-2960-9 . - DOI - PubMed
    1. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x . - DOI
    1. Finegold, S. M., Dowd, S. E., Gontcharova, V., Liu, C., Henley, K. E., Wolcott, R. D., Youn, E., Summanen, P. H., Granpeesheh, D., Dixon, D., & Liu, M. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16(4), 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008 . - DOI - PubMed
    1. Finegold, S. M., Summanen, P. H., Downes, J., Corbett, K., & Komoriya, T. (2017). Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe, 45, 133–137. https://doi.org/10.1016/j.anaerobe.2017.02.008 . - DOI - PubMed
    1. Haas, K. N., & Blanchard, J. L. (2017). Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology, 67(2), 402–410. https://doi.org/10.1099/ijsem.0.001643 . - DOI - PubMed
    1. Hartung, J. (1999). An Alternative method for meta-analysis. Biometrical Journal, 41(8), 901–916. https://doi.org/10.1002/(sici)1521-4036(199912)41:8%3c901::aid-bimj901%3... . - DOI
    1. Hedges, L., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.
    1. Herd, P., Palloni, A., Rey, F., & Dowd, J. B. (2018). Social and population health science approaches to understand the human microbiome. Nature Human Behaviour, 2(11), 808–815. https://doi.org/10.1038/s41562-018-0452-y . - DOI - PubMed - PMC
    1. Heuer, L. S., Croen, L. A., Jones, K. L., Yoshida, C. K., Hansen, R. L., Yolken, R., Zerbo, O., DeLorenze, G., Kharrazi, M., Ashwood, P., & Van de Water, J. (2019). An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: The early markers for autism study. Biological Psychiatry, 86(4), 255–264. https://doi.org/10.1016/j.biopsych.2019.04.037 . - DOI - PubMed - PMC
    1. Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193–206. https://doi.org/10.1037/1082-989x.11.2.193 . - DOI - PubMed
    1. Iglesias-Vázquez, L., van Ginkel Riba, G., Arija, V., & Canals, J. (2020). Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients, 12, 792. https://doi.org/10.3390/nu12030792 . - DOI - PMC
    1. Inoue, R., Sakaue, Y., Sawai, C., Sawai, T., Ozeki, M., Romero-Perez, G. A., & Tsukahara, T. (2016). A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Bioscience, Biotechnology, and Biochemistry, 80(12), 2450–2458. https://doi.org/10.1080/09168451.2016.1222267 . - DOI - PubMed
    1. Iovene, M. R., Bombace, F., Maresca, R., Sapone, A., Iardino, P., Picardi, A., Marotta, R., Schiraldi, C., Siniscalco, D., Serra, N., & de Magistris, L. (2017). Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia, 182(3–4), 349–363. https://doi.org/10.1007/s11046-016-0068-6 . - DOI - PubMed
    1. Jiang, H. Y., Zhang, X., Yu, Z. H., Zhang, Z., Deng, M., Zhao, J. H., & Ruan, B. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. Journal of Psychiatric Research, 104, 130–136. https://doi.org/10.1016/j.jpsychires.2018.07.007 . - DOI - PubMed
    1. Kang, D. W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., & Krajmalnik-Brown, R. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PloS One, 8(7), e68322. https://doi.org/10.1371/journal.pone.0068322 . - DOI - PubMed - PMC
    1. Kang, D.-W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., Lozupone, C. A., Hahn, J., Adams, J. B., & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121–131. https://doi.org/10.1016/j.anaerobe.2017.12.007 . - DOI - PubMed
    1. Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine, 22, 2693–2710. https://doi.org/10.1002/sim.1482 . - DOI - PubMed
    1. Krajmalnik-Brown, R., Lozupone, C., Kang, D.-W., & Adams, J. B. (2015). Gut bacteria in children with autism spectrum disorders: Challenges and promise of studying how a complex community influences a complex disease. Microbial Ecology in Health and Disease, 26, 26914. https://doi.org/10.3402/mehd.v26.26914 . - DOI - PubMed
    1. Kumar, H., Lund, R., Laiho, A., Lundelin, K., Ley, R. E., Isolauri, E., & Salminen, S. (2014). Gut microbiota as an epigenetic regulator: Pilot study based on whole-genome methylation analysis. MBio, 5(6), e02113–e02114. https://doi.org/10.1128/mBio.02113-14 . - DOI - PubMed - PMC
    1. Lopez-Lopez, J. A., Marin-Martinez, F., Sanchez-Meca, J., Van den Noortgate, W., & Viechtbauer, W. (2014). Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study. The British Journal of Mathematical and Statistical Psychology, 67(1), 30–48. https://doi.org/10.1111/bmsp.12002 . - DOI - PubMed
    1. Ma, B., Liang, J., Dai, M., Wang, J., Luo, J., Zhang, Z., & Jing, J. (2019). Altered gut microbiota in Chinese children with autism spectrum disorders. Frontiers in Cellular and Infection Microbiology, 9, 40–40. https://doi.org/10.3389/fcimb.2019.00040 . - DOI - PubMed - PMC
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2019). The role of gut microbiota in gastrointestinal symptoms of children with ASD. Medicina, 55(8), 408. https://doi.org/10.3390/medicina55080408 . - DOI - PMC
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2020a). Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review. Revista de Psiquiatría y Salud Mental, 13(3), 150–164. https://doi.org/10.1016/j.rpsm.2020.06.002 . - DOI - PubMed
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2020b). Una propuesta de probiótico basada en el bifidobacterium para el autismo. Revista Archivos Latinoamericanos de Nutrición, 70(4).
    1. Mayer, E. A., Labus, J., Aziz, Q., Tracey, I., Kilpatrick, L., Elsenbruch, S., Schweinhardt, P., Van Oudenhove, L., & Borsook, D. (2019). Role of brain imaging in disorders of brain–gut interaction: A Rome Working Team Report. Gut, 68(9), 1701–1715. https://doi.org/10.1136/gutjnl-2019-318308%JGut . - DOI - PubMed - PMC
    1. McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133(5), 872–883. https://doi.org/10.1542/peds.2013-3995 . - DOI - PubMed
    1. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, a. t. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135 . - DOI - PubMed - PMC
    1. Moya-Pérez, A., Perez-Villalba, A., Benítez-Páez, A., Campillo, I., & Sanz, Y. (2017). Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain, Behavior, and Immunity, 65, 43–56. https://doi.org/10.1016/j.bbi.2017.05.011 . - DOI - PubMed
    1. Niu, M., Li, Q., Zhang, J., Wen, F., Dang, W., Duan, G., Li, H., Ruan, W., Yang, P., Guan, C., & Tian, H. (2019). Characterization of intestinal microbiota and probiotics treatment in children with autism spectrum disorders in China. Frontiers in Neurology, 10, 1084–1084. https://doi.org/10.3389/fneur.2019.01084 . - DOI - PubMed - PMC
    1. Oh, M., Kim, S. A., & Yoo, H. J. (2020). Higher lactate level and lactate-to-pyruvate ratio in autism spectrum disorder. Experimental Neurobiology, 29(4), 314. https://doi.org/10.5607/en20030 . - DOI - PubMed - PMC
    1. Ooi, Y. P., Weng, S. J., Kossowsky, J., Gerger, H., & Sung, M. (2017). Oxytocin and autism spectrum disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry, 50(1), 5–13. https://doi.org/10.1055/s-0042-109400 . - DOI - PubMed
    1. Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54(Pt 10), 987–991. https://doi.org/10.1099/jmm.0.46101-0 . - DOI - PubMed
    1. Plaza-Díaz, J., Gómez-Fernández, A., Chueca, N., Torre-Aguilar, M. J. D. L., Gil, Á., Perez-Navero, J. L., Flores-Rojas, K., Martín-Borreguero, P., Solis-Urra, P., Ruiz-Ojeda, F. J., & Garcia, F. (2019). Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients, 11(2), 337. https://doi.org/10.3390/nu11020337 . - DOI - PMC
    1. Rossignol, D. A., & Frye, R. E. (2012). Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Molecular Psychiatry, 17, 290. https://doi.org/10.1038/mp.2010.136 . - DOI - PubMed
    1. Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments. Willey. - DOI
    1. Rubio-Aparicio, M., López-López, J., Viechtbauer, W., Marín-Martínez, F., Botella, J., & Sanchez-Meca, J. (2019). Testing categorical moderators in mixed-effects meta-analysis in the presence of heteroscedasticity. The Journal of Experimental Education, 88, 288–310. https://doi.org/10.1080/00220973.2018.1561404 . - DOI
    1. Rücker, G., & Schumacher, M. (2008). Simpson’s paradox visualized: The example of the rosiglitazone meta-analysis. BMC Medical Research Methodology, 8(1), 1–8. - DOI
    1. Sánchez-Meca, J., & Marín-Martínez, F. (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods, 13(1), 31–48. https://doi.org/10.1037/1082-989X.13.1.31 . - DOI - PubMed
    1. Sanchez-Meca, J., Marin-Martinez, F., & Chacon-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4), 448–467. https://doi.org/10.1037/1082-989x.8.4.448 . - DOI - PubMed
    1. Shaaban, S. Y., El Gendy, Y. G., Mehanna, N. S., El-Senousy, W. M., El-Feki, H. S. A., Saad, K., & El-Asheer, O. M. (2017). The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutritional Neuroscience, 21(9), 1–6. https://doi.org/10.1080/1028415x.2017.1347746 . - DOI
    1. Sharp, W. G., Berry, R. C., McCracken, C., Nuhu, N. N., Marvel, E., Saulnier, C. A., Klin, A., Jones, W., & Jaquess, D. L. (2013). Feeding problems and nutrient intake in children with autism spectrum disorders: A meta-analysis and comprehensive review of the literature. Journal of Autism and Developmental Disorders, 43(9), 2159–2173. https://doi.org/10.1007/s10803-013-1771-5 . - DOI - PubMed
    1. Vallée, A., & Vallée, J.-N. (2018). Warburg effect hypothesis in autism Spectrum disorders. Molecular Brain, 11(1), 1. https://doi.org/10.1186/s13041-017-0343-6 . - DOI - PubMed - PMC
    1. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03 . - DOI
    1. Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411–423. https://doi.org/10.1016/j.biopsych.2016.08.024 . - DOI - PubMed
    1. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology, 77(18), 6718–6721. https://doi.org/10.1128/aem.05212-11 . - DOI - PubMed - PMC
    1. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2013). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4, 42. https://doi.org/10.1186/2040-2392-4-42 . - DOI - PubMed - PMC
    1. Wang, S., Harvey, L., Martin, R., van der Beek, E. M., Knol, J., Cryan, J. F., & Renes, I. B. (2018). Targeting the gut microbiota to influence brain development and function in early life. Neuroscience & Biobehavioral Reviews, 95, 191–201. https://doi.org/10.1016/j.neubiorev.2018.09.002 . - DOI
    1. Wells, G. A., Shea, B., O’Connell, D. A., Peterson, J., Welch, V., Losos, M., & Tugwell, P. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute. http://www3.med.unipmn.it/dispense_ebm/2009-2010/Corso%20Perfezionamento...
    1. Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Cho Paik, M., Wick, I., Bennett, A., Jabado, O., Hirschberg, D. L., & Lipkin, W. I. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PloS One, 6(9), e24585. https://doi.org/10.1371/journal.pone.0024585 . - DOI - PubMed - PMC
    1. Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3(1), e00261–00211. https://doi.org/10.1128/mBio.00261-11 . - DOI
    1. Wu, W., Kong, Q., Tian, P., Zhai, Q., Wang, G., Liu, X., Zhao, J., Zhang, H., Lee, Y. K., & Chen, W. (2020). Targeting gut microbiota dysbiosis: Potential intervention strategies for neurological disorders. Engineering. https://doi.org/10.1016/j.eng.2019.07.026 . - DOI - PubMed
    1. Xu, M., Xu, X., Li, J., & Li, F. (2019). Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Frontiers in Psychiatry, 10, 473. https://doi.org/10.3389/fpsyt.2019.00473 . - DOI - PubMed - PMC
    1. Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific Reports, 8(1), 13981–13981. https://doi.org/10.1038/s41598-018-32219-2 . - DOI - PubMed - PMC

02 janvier 2020

Le "trouble du spectre de l'autisme" est associé au trouble du microbiote intestinal chez les enfants

Aperçu: G.M.
CONTEXTE:
Le but de cette étude était d'évaluer l'occurrence et les caractéristiques cliniques des "troubles du spectre de l'autisme" (TSA) associés à l'état stable du microbiote intestinal.
MÉTHODES:
Au total, 9 enfants avec un diagnostic de TSA et 6 enfants sans TSA utilisés comme témoins ont été sélectionnés et des échantillons de matières fécales ont été prélevés sur chacun d'eux. Le séquençage de l'ARN ribosomal du gène 16S a été utilisé pour analyser la différence dans le microbiote intestinal entre les enfants témoins et les patients avec un diagnostic de TSA.
RÉSULTATS:
Les résultats du séquençage 16S basé sur l'analyse des unités taxonomiques opérationnelles (OTU) ont montré que le groupe avec un diagnostic de TSA et le groupe contrôle (GC) présentaient une grande différence dans l'abondance du microbiote au niveau de la famille, du genre et de l'espèce. L'abondance de Bacteroidales et Selenomonadales était significativement plus faible dans le groupe ASD que dans le groupe HC (p = 0,0110 et p = 0,0076, respectivement). L'abondance des Ruminococcaceae dans le groupe TSA était supérieure à celle du groupe GC (p = 0,0285), tandis que la quantité de Prevotellaceae était significativement plus faible dans le groupe TSA que dans le groupe HC (p = 0,0111). L'analyse Tax4Fun basée sur les données de l'Encyclopédie des gènes et génomes de Kyoto (KEGG) a indiqué une voie fonctionnelle différentiellement exprimée entre le groupe TSA et le groupe témoin associé au système nerveux, au traitement de l'information environnementale et au traitement cellulaire.
CONCLUSIONS:
L'abondance du microbiote intestinal dans le groupe TSA est différente de celle des enfants témoins . Ces différences affectent la fonction biologique de l'hôte. 
Ces résultats suggèrent qu'un trouble du microbiote intestinal peut être associé, au moins en partie, aux TSA chez les enfants.


2019 Dec 27;19(1):516. doi: 10.1186/s12887-019-1896-6.

Autism spectrum disorder is associated with gut microbiota disorder in children

Sun H1,2, You Z3, Jia L4, Wang F5.

Author information

1
Departemnt of Pediatrics, the Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, 214145, Jiangsu Province, China. 2267552158@qq.com.
2
Departemnt of Pediatrics, the Fifth Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China. 2267552158@qq.com.
3
Departemnt of Pediatrics, the Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, 214145, Jiangsu Province, China.
4
Departemnt of Pediatrics, Huishan District Rehabilitation Hospital, Wuxi City, Jiangsu Province, China.
5
School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China. wangfanglukas@163.com.

Abstract

BACKGROUND:

The aim of this study was to evaluate the occurrence and clinical characteristics of autism spectrum disorder (ASD) associated to the stable state of the gut microbiota.

METHODS:

A total of 9 children with ASD and 6 healthy children used as control were selected and feces samples were collected from all of them. The 16S gene ribosomal RNA sequencing was used to analyze the difference in gut microbiota between healthy control children and ASD patients.

RESULTS:

The results of 16S sequencing based on operational taxonomic units (OTUs) analysis showed that the ASD group and the healthy control (HC) group had a large difference in the abundance of microbiota at the level of family, genus and species. The abundance of Bacteroidales and Selenomonadales was significantly lower in the ASD group than in the HC group (p = 0.0110 and p = 0.0076, respectively). The abundance of Ruminococcaceae in the ASD group was higher than that in the HC group (p = 0.0285), while the amount of Prevotellaceae was significantly lower in the ASD group than in the HC group (p = 0.0111). The Tax4Fun analysis based on Kyoto Encyclopaedia of Genes and Genomes (KEGG) data indicated differentially expressed functional pathway between the ASD group and healthy control group associated to the nervous system, environmental information processing and cellular processing.

CONCLUSIONS:

The abundance of gut microbiota in the ASD group is different from that in the healthy control children. These differences affect the biological function of the host. These results suggest that a disorder in the gut microbiota may be associated, at least in part, with ASD in children.

PMID:31881951
PMCID:PMC6933684
DOI:10.1186/s12887-019-1896-6

30 septembre 2019

Microbiote: un nouveau régulateur de la douleur

Aperçu: G.M.
Parmi les divers régulateurs du système nerveux, le microbiote intestinal a récemment été décrit comme ayant le potentiel de moduler l'activation des cellules neuronales. Alors que les produits dérivés de bactéries peuvent induire des réponses aversives et influencer la perception de la douleur, des travaux récents suggèrent que le microbiote "anormal" est associé à des maladies neurologiques telles que la maladie d'Alzheimer, la maladie de Parkinson ou les "troubles du spectre de l'autisme" (TSA). 
Nous examinons ici comment le microbiote intestinal module la fonction des neurones sensoriels afférents et la douleur, en soulignant le rôle de l'axe microbiote / intestin / cerveau dans le contrôle des comportements et des maladies neurologiques. 
Nous décrivons les changements dans le microbiote intestinal, appelé dysbiose, et leur influence sur les troubles gastro-intestinaux douloureux. En outre, une interaction directe hôte / microbiote impliquant l'activation de neurones "sensibles à la douleur" par des métabolites, ou une communication indirecte via l'activation immunitaire est discutée. 
Enfin, des options de traitement ciblant le microbiote intestinal, y compris des pré-probiotiques ou des probiotiques, seront proposées. 
D'autres études sur l'interaction microbiote / système nerveux devraient permettre d'identifier de nouveaux ligands microbiens et médicaments ciblés sur les récepteurs de l'hôte, susceptibles d'améliorer à terme la gestion de la douleur chronique et le bien-être.

2019 Sep 24. doi: 10.1007/s00702-019-02083-z.

Microbiota: a novel regulator of pain

Author information

1
Department of Physiology and Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
2
GREENTECH SA, Saint-Beauzire, France.
3
Université Clermont Auvergne, INSERM U1107, NeuroDol, CRHN Auvergne, 28 place Henri Dunant, BP 38, 63001, Clermont-Ferrand, France.
4
Université Clermont Auvergne, INRA, Unité de Nutrition Humaine ECREIN, CRNH Auvergne, 63000, Clermont-Ferrand, France.
5
Université Clermont Auvergne, INSERM U1107, NeuroDol, CRHN Auvergne, 28 place Henri Dunant, BP 38, 63001, Clermont-Ferrand, France. frederic.carvalho@inserm.fr.

Abstract

Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.

PMID:31552496
DOI:10.1007/s00702-019-02083-z