Affichage des articles dont le libellé est organites. Afficher tous les articles
Affichage des articles dont le libellé est organites. Afficher tous les articles

14 janvier 2018

Epigénétique et organoïdes cérébraux: des directions prometteuses dans les "troubles du spectre de l'autisme"

Aperçu: G.M.
Les "troubles du spectre de l'autisme" (TSA) affectent 1 sur 68 enfants aux États-Unis selon les Centers for Disease Control and Prevention (CDC). Ils se caractérisent par des déficiences dans les interactions sociales et la communication, des schémas de comportements restrictifs et répétitifs et des intérêts. En raison de la complexité du trouble, seul un nombre limité d'options de traitement sont disponibles principalement pour les enfants qui soulagent mais ne guérissent pas les symptômes invalidants. 
Des études confirment un lien génétique, mais les facteurs environnementaux, tels que les médicaments, les toxines et les infections maternelles pendant la grossesse, ainsi que les complications à la naissance jouent également un rôle. Certaines études indiquent un ensemble de gènes candidats avec différents profils de méthylation de l'ADN dans les TSA par rapport aux individus en bonne santé. Ainsi, les altérations épigénétiques pourraient aider à combler le fossé gène-environnement dans le déchiffrement de la neurobiologie sous-jacente de l'autisme. Cependant, les études d'association à l'échelle de l'épigénome (EWAS) ont principalement inclus un nombre très limité d'échantillons de cerveau post-mortem. Par conséquent, les modèles cellulaires imitant le développement du cerveau in vitro seront d'une grande importance pour étudier les altérations épigénétiques critiques et quand elles peuvent se produire.  
Cette revue donnera un aperçu de l'état de l'art concernant les connaissances sur les changements épigénétiques dans l'autisme et comment une nouvelle expertise de pointe basée sur des modèles de cellules souches tridimensionnelles (organites du cerveau) peut contribuer à élucider les multiples aspects des mécanismes du trouble.

Transl Psychiatry. 2018 Jan 10;8(1):14. doi: 10.1038/s41398-017-0062-x.

Epigenetics and cerebral organoids: promising directions in autism spectrum disorders

Author information

1
Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark.
2
Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark. milieva@health.sdu.dk.
3
Department of Psychiatry, Psychiatry in the region of Southern Denmark, Odense, Denmark.
4
Odense Center for Applied Neuroscience BRIDGE, University of Southern Denmark, Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.

Abstract

Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.
PMID:29317608
DOI:10.1038/s41398-017-0062-x