Affichage des articles dont le libellé est facteur de risque. Afficher tous les articles
Affichage des articles dont le libellé est facteur de risque. Afficher tous les articles

15 mai 2021

Exposition de la mère aux pesticides et risque de "troubles du spectre de l'autisme" chez la progéniture: une méta-analyse

Aperçu: G.M.

Cette méta-analyse a été menée pour estimer l'association globale entre l'exposition maternelle aux pesticides et le risque de TSA chez la progéniture.
Des rechertches ont été menées sur PubMed, EMBASE, Web of Science et PsycINFO jusqu'au 30 décembre 2020 pour inclure les études éligibles.
Huit études avec 50 426 participants, dont 5810 avaient un TSA, ont été impliquées dans l'étude.
Dans l'ensemble, le RC sommaire (intervalle de confiance à 95%) des TSA chez la progéniture pour l'exposition maternelle aux pesticides estimé par les mesures de proximité résidentielle et l'auto-évaluation était de 1,88 (1,10-3,20).
Cependant, l'exposition maternelle aux pesticides mesurée par des biomarqueurs n'était pas associée à un risque accru de TSA (OR combiné 1,13; IC à 95% 0,83-1,54).
D'autres études bien conçues sont nécessaires pour confirmer nos résultats.

Maternal Exposure to Pesticides and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis

Affiliations

Abstract

This meta-analysis was conducted to estimate the overall association between maternal exposure to pesticides and risk of ASD in offspring. PubMed, EMBASE, Web of Science, and the PsycINFO were searched until December 30, 2020 to include eligible studies. Eight studies with 50,426 participants, 5810 of whom had ASD, were involved in the study. Overall, the summary OR (95% confidence interval) of ASDs in offspring for maternal exposure to pesticide estimated by residential proximity measures and self-report was 1.88 (1.10-3.20). However, maternal exposure to pesticide measured by biomarkers was not associated with an increased risk of ASDs (pooled OR 1.13; 95% CI 0.83-1.54). Further well-designed studies are needed to confirm our findings.

Keywords: Autism; Meta-analysis; Pesticides; Risk factor.

References

    1. American Psychiatric Association (APA). (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Association. Retrieved April 4, 2020, from https://www.psychiatry.org/psychiatrists/practice/dsm
    1. Andersen, H. R., Debes, F., Wohlfahrt-Veje, C., Murata, K., & Grandjean, P. (2015). Occupational pesticide exposure in early pregnancy associated with sex-specific neurobehavioral deficits in the children at school age. Neurotoxicology and Teratology, 47, 1–9. https://doi.org/10.1016/j.ntt.2014.10.006 - DOI - PubMed
    1. Bachelet, D., Truong, T., Verner, M.-A., Arveux, P., Kerbrat, P., Charlier, C., Guihenneuc-Jouyaux, C., & Guénel, P. (2011). Determinants of serum concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and polychlorinated biphenyls among French women in the CECILE study. Environmental Research, 111, 861–870. https://doi.org/10.1016/j.envres.2011.06.001 - DOI - PubMed
    1. Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychological Medicine, 45, 601–613. https://doi.org/10.1017/s003329171400172x - DOI - PubMed
    1. Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088–1101 - DOI
    1. Bigbee, J. W., Sharma, K. V., Chan, E. L. P., & Bögler, O. (2000). Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Research, 861, 354–362. https://doi.org/10.1016/S0006-8993(00)02046-1 - DOI - PubMed
    1. Bjørklund, G., Meguid, N. A., El-Bana, M. A., Tinkov, A. A., Saad, K., Dadar, M., Hemimi, M., Skalny, A. V., Hosnedlová, B., Kizek, R., Osredkar, J., Urbina, M. A., Fabjan, T., El-Houfey, A. A., Kałużna-Czaplińska, J., Gątarek, P., & Chirumbolo, S. (2020). Oxidative stress in autism spectrum disorder. Molecular Neurobiology. https://doi.org/10.1007/s12035-019-01742-2 - DOI - PubMed - PMC
    1. Bradman, A., Barr, D. B., Claus Henn, B. G., Drumheller, T., Curry, C., & Eskenazi, B. (2003). Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: A validation study. Environmental Health Perspectives, 111, 1779–1782. https://doi.org/10.1289/ehp.6259 - DOI - PubMed - PMC
    1. Brown, A. S., Cheslack-Postava, K., Rantakokko, P., Kiviranta, H., Hinkka-Yli-Salomäki, S., McKeague, I. W., Surcel, H.-M., & Sourander, A. (2018). Association of maternal insecticide levels with autism in offspring from a national birth cohort. American Journal of Psychiatry, 175, 1094–1101. https://doi.org/10.1176/appi.ajp.2018.17101129 - DOI
    1. Burdorf, A., Brand, T., Jaddoe, V. W., Hofman, A., Mackenbach, J. P., & Steegers, E. A. P. (2011). The effects of work-related maternal risk factors on time to pregnancy, preterm birth and birth weight: The generation R study. Occupational and Environmental Medicine, 68, 197. https://doi.org/10.1136/oem.2009.046516 - DOI - PubMed
    1. Casida, J. E. (2009). Pest toxicology: The primary mechanisms of pesticide action. Chemical Research in Toxicology, 22, 609–619. https://doi.org/10.1021/tx8004949 - DOI - PubMed
    1. Cheslack-Postava, K., Rantakokko, P. V., Hinkka-Yli-Salomäki, S., Surcel, H.-M., McKeague, I. W., Kiviranta, H. A., Sourander, A., & Brown, A. S. (2013). Maternal serum persistent organic pollutants in the finnish prenatal study of autism: A pilot study. Neurotoxicology and Teratology, 38, 1–5. https://doi.org/10.1016/j.ntt.2013.04.001 - DOI - PubMed - PMC
    1. Christian, M. A., Samms-Vaughan, M., Lee, M., Bressler, J., Hessabi, M., Grove, M. L., Shakespeare-Pellington, S., Desai, C. C., Reece, J.-A., Loveland, K. A., Boerwinkle, E., & Rahbar, M. H. (2018). Maternal exposures associated with autism spectrum disorder in Jamaican children. Journal of Autism and Developmental Disorders, 48, 2766–2778. https://doi.org/10.1007/s10803-018-3537-6 - DOI - PubMed - PMC
    1. de Bildt, A., Sytema, S., Ketelaars, C., Kraijer, D., Mulder, E., Volkmar, F., & Minderaa, R. (2004). Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation. Journal of Autism and Developmental Disorders, 34, 129–137. https://doi.org/10.1023/B:JADD.0000022604.22374.5f - DOI - PubMed
    1. De Felice, A., Scattoni, M. L., Ricceri, L., & Calamandrei, G. (2015). Prenatal exposure to a common organophosphate insecticide delays motor development in a mouse model of idiopathic autism. PLoS ONE, 10, e0121663. https://doi.org/10.1371/journal.pone.0121663 - DOI - PubMed - PMC
    1. Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629. https://doi.org/10.1136/bmj.315.7109.629 - DOI - PubMed - PMC
    1. Eskenazi, B., Marks, A. R., Bradman, A., Harley, K., Barr, D. B., Johnson, C., Morga, N., & Jewell, N. P. (2007). Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environmental health perspectives, 115, 792–8. https://doi.org/10.1289/ehp.9828 - DOI - PubMed - PMC
    1. Evangelou, E., Ntritsos, G., Chondrogiorgi, M., Kavvoura, F. K., Hernández, A. F., Ntzani, E. E., & Tzoulaki, I. (2016). Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environment International, 91, 60–68. https://doi.org/10.1016/j.envint.2016.02.013 - DOI - PubMed
    1. Furlong, M. A., Engel, S. M., Barr, D. B., & Wolff, M. S. (2014). Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood. Environment International, 70, 125–131. https://doi.org/10.1016/j.envint.2014.05.011 - DOI - PubMed - PMC
    1. Gray, L. E., Jr., & Ostby, J. (1998). Effects of pesticides and toxic substances on behavioral and morphological reproductive development: Endocrine versus nonendocrine mechanisms. Toxicology and Industrial Health, 14, 159–184. https://doi.org/10.1177/074823379801400111 - DOI - PubMed
    1. Hamra, G. B., Lyall, K., Windham, G. C., Calafat, A. M., Sjödin, A., Volk, H., & Croen, L. A. (2019). Prenatal exposure to endocrine-disrupting chemicals in relation to autism spectrum disorder and intellectual disability. Epidemiology (Cambridge, Mass), 30, 418–426. https://doi.org/10.1097/ede.0000000000000983 - DOI
    1. Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186 - DOI - PubMed
    1. Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 557. https://doi.org/10.1136/bmj.327.7414.557 - DOI - PubMed - PMC
    1. Keil, A. P., Daniels, J. L., & Hertz-Picciotto, I. (2014). Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: The CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Environmental Health : A Global Access Science Source, 13, 3. https://doi.org/10.1186/1476-069x-13-3 - DOI
    1. Landrigan, P. (2017). Pesticides and human reproduction. JAMA Internal Medicine. https://doi.org/10.1001/jamainternmed.2017.5092 - DOI
    1. Lee, D.-H., Lind, L., Jacobs, D. R., Salihovic, S., van Bavel, B., & Lind, P. M. (2012). Associations of persistent organic pollutants with abdominal obesity in the elderly: The prospective investigation of the vasculature in uppsala seniors (PIVUS) study. Environment International, 40, 170–178. https://doi.org/10.1016/j.envint.2011.07.010 - DOI - PubMed
    1. Lee, I., Eriksson, P., Fredriksson, A., Buratovic, S., & Viberg, H. (2015). Developmental neurotoxic effects of two pesticides: Behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology, 335, 1–10. https://doi.org/10.1016/j.tox.2015.06.010 - DOI - PubMed
    1. Lord, C., Brugha, T. S., Charman, T., Cusack, J., Dumas, G., Frazier, T., Jones, E. J. H., Jones, R. M., Pickles, A., State, M. W., Taylor, J. L., & Veenstra-VanderWeele, J. (2020). Autism spectrum disorder. Nature Reviews Disease Primers, 6, 5. https://doi.org/10.1038/s41572-019-0138-4 - DOI - PubMed
    1. Lu, C., Bravo, R., Caltabiano, L. M., Irish, R. M., Weerasekera, G., & Barr, D. B. (2005). The presence of dialkylphosphates in fresh fruit juices: Implication for organophosphorus pesticide exposure and risk assessments. Journal of Toxicology and Environmental Health, Part A, 68, 209–227. https://doi.org/10.1080/15287390590890554 - DOI
    1. Lyall, K., Croen, L. A., Sjödin, A., Yoshida, C. K., Zerbo, O., Kharrazi, M., & Windham, G. C. (2017). Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: Association with autism spectrum disorder and intellectual disability. Environmental Health Perspectives, 125, 474–480. https://doi.org/10.1289/EHP277 - DOI - PubMed
    1. Morales, D. R., Slattery, J., Evans, S., & Kurz, X. (2018). Antidepressant use during pregnancy and risk of autism spectrum disorder and attention deficit hyperactivity disorder: Systematic review of observational studies and methodological considerations. BMC Medicine, 16, 6. https://doi.org/10.1186/s12916-017-0993-3 - DOI - PubMed - PMC
    1. Mostafalou, S., & Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91, 549–599. https://doi.org/10.1007/s00204-016-1849-x - DOI - PubMed
    1. World Health Organization. (2019). Fact sheet, autism spectrum disorders. World Health Organization, Retrieved April 4, 2020, from https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
    1. Pang, Y., Lee, C. M., Wright, M., Shen, J., Shen, B., & Bo, J. (2018). Challenges of case identification and diagnosis of autism spectrum disorders in China: A critical review of procedures, assessment, and diagnostic criteria. Research in Autism Spectrum Disorders, 53, 53–66. https://doi.org/10.1016/j.rasd.2018.06.003 - DOI
    1. Pearson, B. L., Simon, J. M., McCoy, E. S., Salazar, G., Fragola, G., & Zylka, M. J. (2016). Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nature Communications, 7, 11173. https://doi.org/10.1038/ncomms11173 - DOI - PubMed - PMC
    1. Philippat, C., Barkoski, J., Tancredi, D. J., Elms, B., Barr, D. B., Ozonoff, S., Bennett, D. H., & Hertz-Picciotto, I. (2018). Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. International Journal of Hygiene and Environmental Health, 221, 548–555. https://doi.org/10.1016/j.ijheh.2018.02.004 - DOI - PubMed - PMC
    1. Roberts Eric, M., English Paul, B., Grether Judith, K., Windham Gayle, C., Somberg, L., & Wolff, C. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the california central valley. Environmental Health Perspectives, 115, 1482–1489. https://doi.org/10.1289/ehp.10168 - DOI - PubMed - PMC
    1. Ruediger, T., & Bolz, J. (2007). Neurotransmitters and the development of neuronal circuits. Advances in Experimental Medicine and Biology, 621, 104–115. https://doi.org/10.1007/978-0-387-76715-4_8 - DOI - PubMed
    1. Sagiv, S. K., Harris, M. H., Gunier, R. B., Kogut, K. R., Harley, K. G., Deardorff, J., Bradman, A., Holland, N., & Eskenazi, B. (2018). Prenatal organophosphate pesticide exposure and traits related to autism spectrum disorders in a population living in proximity to agriculture. Environmental Health Perspectives, 126, 047012. https://doi.org/10.1289/ehp2580 - DOI - PubMed - PMC
    1. Sandin, S., Hultman, C. M., Kolevzon, A., Gross, R., MacCabe, J. H., & Reichenberg, A. (2012). Advancing maternal age is associated with increasing risk for autism: A review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 51, 477-486.e1. https://doi.org/10.1016/j.jaac.2012.02.018 - DOI
    1. Schmidt, R. J., Kogan, V., Shelton, J. F., Delwiche, L., Hansen, R. L., Ozonoff, S., Ma, C. C., McCanlies, E. C., Bennett, D. H., Hertz-Picciotto, I., Tancredi, D. J., & Volk, H. E. (2017). Combined prenatal pesticide exposure and folic acid intake in relation to autism spectrum disorder. Environmental Health Perspectives, 125, 097007. https://doi.org/10.1289/ehp604 - DOI - PubMed - PMC
    1. Shelton, J. F., Geraghty, E. M., Tancredi, D. J., Delwiche, L. D., Schmidt, R. J., Ritz, B., Hansen, R. L., & Hertz-Picciotto, I. (2014). Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE study. Environmental Health Perspectives, 122, 1103–1109. https://doi.org/10.1289/ehp.1307044 - DOI - PubMed - PMC
    1. Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., Moher, D., Becker, B. J., Sipe, T. A., & Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. JAMA, 283, 2008–2012. https://doi.org/10.1001/jama.283.15.2008 - DOI - PubMed
    1. Topal, A., Alak, G., Ozkaraca, M., Yeltekin, A. C., Comaklı, S., Acıl, G., Kokturk, M., & Atamanalp, M. (2017). Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175, 186–191. https://doi.org/10.1016/j.chemosphere.2017.02.047 - DOI - PubMed
    1. Viel, J.-F., Rouget, F., Warembourg, C., Monfort, C., Limon, G., Cordier, S., & Chevrier, C. (2017). Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: The PELAGIE mother-child cohort. Occupational and Environmental Medicine, 74, 275–281. https://doi.org/10.1136/oemed-2016-104035 - DOI - PubMed
    1. von Ehrenstein, O. S., Ling, C., Cui, X., Cockburn, M., Park, A. S., Yu, F., Wu, J., & Ritz, B. (2019). Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ, 364, l962. https://doi.org/10.1136/bmj.l962 - DOI
    1. Wang, Y., Tang, S., Xu, S., Weng, S., & Liu, Z. (2016). Maternal body mass index and risk of autism spectrum disorders in offspring: A meta-analysis. Scientific Reports, 6, 34248. https://doi.org/10.1038/srep34248 - DOI - PubMed - PMC
    1. Wells, G. A., O’Connell, B. S. D., Peterson, J., Welch, V., Losos, M., & Tugwell, P. (2011). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Health Research Institute.
    1. Xu, G., Jing, J., Bowers, K., Liu, B., & Bao, W. (2014). Maternal diabetes and the risk of autism spectrum disorders in the offspring: A systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 44, 766–775. https://doi.org/10.1007/s10803-013-1928-2 - DOI - PubMed - PMC
    1. Zhu, Z., Tang, S., Deng, X., & Wang, Y. (2020). Maternal systemic lupus erythematosus, rheumatoid arthritis, and risk for autism spectrum disorders in offspring: A meta-analysis. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-020-04400-y - DOI - PubMed

01 février 2020

Association entre l'ictère néonatal et les "troubles du spectre de l'autisme" chez les enfants: une méta-analyse

Aperçu: G.M.
Le "trouble du spectre de l'autisme" est un trouble neurodéveloppemental commun avec une étiologie inconnue. La corrélation entre l'ictère néonatal et le risque de développer un "trouble du spectre de l'autisme" a été étudiée précédemment. Certaines études ont montré des associations significatives, tandis que d'autres n'ont démontré aucune association. 
Dans cette méta-analyse, nous avons regroupé les résultats d'études observationnelles pour examiner l'association entre l'ictère néonatal et le risque de "trouble du spectre de l'autisme" (TSA) chez les enfants. Nous avons identifié toutes les études publiées jusqu'en avril 2018 en effectuant une recherche documentaire en utilisant les bases de données Web of Science, PubMed et Scopus ainsi que les listes de référence des études récupérées. Les odds ratios (OR) regroupés, le ratio de taux (RR) et leurs intervalles de confiance (IC) à 95% ont été calculés comme des estimations aléatoires de l'association entre les études. Nous avons effectué une analyse en sous-groupe pour explorer toutes les sources potentielles d'hétérogénéité intergroupe. 
Les estimations groupées de OR et RR ont montré une corrélation considérable entre l'ictère néonatal et le TSA chez les enfants (OR, 1,35; IC à 95%, 1,02-1,68) et (RR, 1,39; IC à 95%, 1,05-1,74). 
Cette étude a montré que l'ictère néonatal peut être associé à un TSA et peut augmenter le risque de TSA chez les enfants.

2020 Jan;63(1):8-13. doi: 10.3345/kjp.2019.00815. Epub 2019 Nov 7.

Association between neonatal jaundice and autism spectrum disorders among children: a meta-analysis

Author information

1
Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
2
Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
3
Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Abstract

Autism spectrum disorder is a common neurodevelopmental disorder with an unknown etiology. The correlation between neonatal jaundice and the risk of developing autism spectrum disorder was investigated previously. Some studies showed significant associations, whereas others demonstrated no association. In this meta-analysis, we pooled the results of observational studies to examine the association between neonatal jaundice and the risk of autism spectrum disorder among children. We identified all studies published through April 2018 by conducting a literature search using Web of Science, PubMed, and Scopus databases as well as the reference lists of the retrieved studies. The pooled odds ratios (ORs), rate ratio (RR), and their 95% confidence intervals (CIs) were calculated as random effect estimates of association among studies. We conducted a subgroup analysis to explore any potential sources of intergroup heterogeneity. The pooled estimates of OR and RR showed a considerable correlation between neonatal jaundice and ASD among children (OR, 1.35; 95% CI, 1.02-1.68) and (RR, 1.39; 95% CI, 1.05-1.74). A larger effect size was shown in the pooled estimated crude OR than in the adjusted OR (1.75 [0.96-2.54] vs. 1.19 [1.07-1.30]). This study showed that neonatal jaundice may be associated with ASD and may increase the risk of ASD among children.
PMID:31999913
DOI:10.3345/kjp.2019.00815

26 octobre 2019

L'exposition prénatale à la pollution atmosphérique en tant que facteur de risque potentiel pour l'autisme et le TDAH

Aperçu: G.M.
Des facteurs génétiques et environnementaux contribuent tous deux au développement des "troubles du spectre de l'autisme" (TSA) et du trouble déficit de l'attention / hyperactivité (TDAH). Un des facteurs de risque environnementaux suggérés pour les TSA et le TDAH est la pollution de l'air, mais les effets de ses effets, en particulier dans les zones de faible exposition, sont limités. 
Ici, nous étudions les risques de TSA et de TDAH associés à une exposition prénatale à la pollution atmosphérique dans une zone où les niveaux de pollution atmosphérique sont généralement bien inférieurs aux recommandations de l'Organisation mondiale de la santé (OMS) relatives à la qualité de l'air. Nous avons utilisé une base de données épidémiologiques (MAPSS) composée de pratiquement tous les enfants (99%) nés entre 1999 et 2009 (48 571 naissances) dans la zone d'étude, dans le sud de la Suède. Le MAPSS est constitué de données sur les niveaux modélisés d’oxydes d’azote (NOx) dérivés d’un modèle de dispersion gaussien; résidence maternelle pendant la grossesse; facteurs périnatals recueillis à partir d'un registre régional des naissances; et des facteurs socio-économiques extraits de Statistics Sweden. Tous les diagnostics de TED et de TDAH figurant dans nos données ont été effectués dans les départements de psychiatrie de l'enfant et de l'adolescent de Malmö et de Lund, à l'aide d'instruments de diagnostic normalisés. Nous avons utilisé des analyses de régression logistique pour obtenir des estimations du risque de développer un TSA et un TDAH associé à différents niveaux de pollution atmosphérique, en ajustant les facteurs de confusion périnatals et socio-économiques potentiels. 
Dans cette étude de cohorte longitudinale, nous avons trouvé des associations entre l'exposition à la pollution atmosphérique pendant la période prénatale et le risque de développer un TSA. Par exemple, un Odds Ratio (OR) ajusté de 1,40 et son intervalle de confiance à 95% (IC) (IC 95%: 1,02-1,93) ont été trouvés lors de la comparaison du quatrième au premier quartile d'exposition au NOx. 
Nous n'avons pas trouvé d'associations similaires sur le risque de développer un TDAH. 
Cette étude contribue à la preuve croissante d'un lien entre l'exposition prénatale à la pollution atmosphérique et les "troubles du spectre de l'autisme" , suggérant que l'exposition prénatale même en dessous des recommandations actuelles de l'OMS sur la qualité de l'air pourrait augmenter le risque de "troubles du spectre de l'autisme" .


2019 Oct 16;133(Pt A):105149. doi: 10.1016/j.envint.2019.105149.

Prenatal exposure to air pollution as a potential risk factor for autism and ADHD

Author information

1
Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden; Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Sweden.
2
Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden.
3
Child and Adolescent Psychiatry, Department of Clinical Sciences Lund, Lund University, Sweden.
4
Centre of Reproduction Epidemiology, Tornblad Institute, Department of Clinical Sciences, Lund University, Sweden.
5
Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Sweden.
6
Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden. Electronic address: ebba.malmqvist@med.lu.se.

Abstract

Genetic and environmental factors both contribute to the development of Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD). One suggested environmental risk factor for ASD and ADHD is air pollution, but knowledge of its effects, especially in low-exposure areas, are limited. Here, we investigate risks for ASD and ADHD associated with prenatal exposure to air pollution in an area with air pollution levels generally well below World Health Organization (WHO) air quality guidelines. We used an epidemiological database (MAPSS) consisting of virtually all (99%) children born between 1999 and 2009 (48,571 births) in the study area, in southern Sweden. MAPSS consists of data on modelled nitrogen oxide (NOx) levels derived from a Gaussian dispersion model; maternal residency during pregnancy; perinatal factors collected from a regional birth registry; and socio-economic factors extracted from Statistics Sweden. All ASD and ADHD diagnoses in our data were undertaken at the Malmö and Lund Departments of Child and Adolescent Psychiatry, using standardized diagnostic instruments. We used logistic regression analyses to obtain estimates of the risk of developing ASD and ADHD associated with different air pollution levels, with adjustments for potential perinatal and socio-economic confounders. In this longitudinal cohort study, we found associations between air pollution exposure during the prenatal period and and the risk of developing ASD. For example, an adjusted Odds Ratio (OR) of 1.40 and its 95% Confidence Interval (CI) (95% CI: 1.02-1.93) were found when comparing the fourth with the first quartile of NOx exposure. We did not find similar associations on the risk of developing ADHD. This study contributes to the growing evidence of a link between prenatal exposure to air pollution and autism spectrum disorders, suggesting that prenatal exposure even below current WHO air quality guidelines may increase the risk of autism spectrum disorders.
PMID:31629172
DOI:10.1016/j.envint.2019.105149

07 septembre 2019

Confusion familiale de l'association entre le tabagisme maternel pendant la grossesse et le "trouble du spectre de l'autisme" chez la progéniture

Aperçu: G.M.
Les preuves ne corroborent aucun lien entre le tabagisme maternel pendant la grossesse et le "trouble du spectre de l'autisme" (autisme) en général. Pour répondre aux questions restantes concernant l'hétérogénéité inexpliquée des résultats de l'étude et la possibilité de risque de sous-phénotypes spécifiques de l'autisme, nous avons mené une étude de cohorte sur l'ensemble de la population au Danemark. Nous avons suivi les naissances de 1991 à 2011 (1 294 906 personnes, dont 993 301 frères et soeurs dans 728 271 familles), à partir de 1 an jusqu'à un diagnostic d'autisme (13 547), décès, émigration ou 31 décembre 2012. 
L'autisme avec ou sans déficit de l'attention avec hyperactivité (TDAH) et avec et sans déficience intellectuelle (DI) étaient basés sur les codes CIM-8 et CIM-10 des registres nationaux de la santé danois, y compris 3 319 autisme + TDAH, 10 228 autisme - sans TDAH, 2 205 autisme + DI et 11 342 autisme - pas d'identification. 
Nous avons estimé les ratios de risque (HR) et les intervalles de confiance à 95% (IC 95%) entre le tabagisme maternel (à partir des registres de naissance) et l'autisme (ou sous-phénotypes) à l'aide de modèles de survie avec erreurs types robustes, stratification par année de naissance et ajustement pour enfants, sexe, parité et âge, éducation, revenus et antécédents psychiatriques des parents. 
Pour résoudre les problèmes de confusion en utilisant les conceptions familiales, nous avons construit un modèle de cluster maternel (ajustant la proportion de fumeurs dans la famille) et un modèle stratifié de frères et sœurs. Les associations avec le tabagisme maternel et l'autisme étaient élevées dans les analyses ajustées conventionnelles (HR de 1,17 [1,13-1,22]) mais atténuées dans les modèles à grappes maternelles (0,98 [0,88-1,09]) et chez les frères et soeurs (0,86 [0,64 à 1,15]). 
De même, les risques de sous-phénotypes de l'autisme liés au tabagisme maternel ont été atténués dans les modèles basés sur la famille. 
Ensemble, ces résultats confirment que le tabagisme pendant la grossesse n'est pas lié à l'autisme ou à certains sous-phénotypes comorbides autistes après prise en compte de la confusion familiale.

2019 Aug 29. doi: 10.1002/aur.2196.

Familial confounding of the association between maternal smoking in pregnancy and autism spectrum disorder in offspring

Author information

1
Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
2
Child and Adolescent Mental Health Centre-Mental Health Services Capital Region, Copenhagen Region, Denmark.
3
Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark.
4
The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
5
Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
6
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
7
Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
8
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
9
Department of Public Health, Section for Biostatistics, Aarhus University, Aarhus, Denmark.
10
Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.
11
Department of Economics and Business, National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.
12
Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark.

Abstract

Evidence supports no link between maternal smoking in pregnancy and autism spectrum disorder (autism) overall. To address remaining questions about the unexplained heterogeneity between study results and the possibility of risk for specific autism sub-phenotypes, we conducted a whole-population cohort study in Denmark. We followed births 1991-2011 (1,294,906 persons, including 993,301 siblings in 728,271 families), from 1 year of age until an autism diagnosis (13,547), death, emigration, or December 31, 2012. Autism, with and without attention deficit hyperactivity disorder (ADHD) and with and without intellectual disability (ID) were based on ICD-8 and ICD-10 codes from Danish national health registers, including 3,319 autism + ADHD, 10,228 autism - no ADHD, 2,205 autism + ID, and 11,342 autism - no ID. We estimated hazard ratios (HRs) and 95% confidence intervals (95% CIs) between any maternal smoking (from birth records) and autism (or sub-phenotypes) using survival models with robust standard errors, stratifying by birth year and adjusting for child sex, parity, and parental age, education, income, and psychiatric history. To additionally address confounding using family designs, we constructed a maternal cluster model (adjusting for the smoking proportion within the family), and a stratified sibling model. Associations with maternal smoking and autism were elevated in conventional adjusted analyses (HR of 1.17 [1.13-1.22]) but attenuated in the maternal cluster (0.98 [0.88-1.09]) and sibling (0.86 [0.64-1.15]) models. Similarly, risks of autism sub-phenotypes with maternal smoking were attenuated in the family-based models. Together these results support that smoking in pregnancy is not linked with autism or select autism comorbid sub-phenotypes after accounting for familial confounding. Autism Res 2019. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Smoking during pregnancy has many harmful impacts, which may include harming the baby's developing brain. However, in a study of thousands of families in Denmark, it does not appear that smoking in pregnancy leads to autism or autism in combination with intellectual problems or attention deficits, once you account for the way smoking patterns and developmental disabilities run in families.
PMID:31464107
DOI:10.1002/aur.2196