Affichage des articles dont le libellé est cerveau. Afficher tous les articles
Affichage des articles dont le libellé est cerveau. Afficher tous les articles

18 décembre 2006

Génétique: l'influence de la mère sur le cerveau de son foetus

Par Brigitte CASTELNAU

PARIS (AFP) - Le patrimoine génétique de la mère interviendrait directement pendant la grossesse sur le développement normal du foetus, indépendamment des gènes acquis à la conception, selon des travaux de chercheurs français publiés lundi dans les comptes rendus de l'académie des sciences américaine, les PNAS.
"Cette découverte a des implications pour la compréhension de l'autisme, un trouble du développement, ou le syndrome de l'intestin irritable qui touche 20% de la population", a indiqué à l'AFP Jacques Mallet, responsable de l'étude.

Lors de la conception, le père et la mère transmettent chacun une partie de leur patrimoine génétique. Mais l'influence maternelle découverte par les chercheurs intervient sur le foetus indépendamment des gènes qu'il a ainsi acquis de ses parents.

Les chercheurs ont établi "pour la première fois" le rôle crucial de la sérotonine maternelle --dépendant de ses propres gènes-- sur le développement foetal, en particulier du cerveau, mais aussi du coeur et du tube digestif.

La sérotonine est par ailleurs impliquée dans divers processus: régulation du cycle veille/sommeil, contrôle de la température du corps, de la pression artérielle, de la prise alimentaire et du comportement sexuel ou maternel.

Chez les mammifères, avant le dernier tiers de la gestation, on n'a jamais détecté de production par l'embryon lui-même de sérotonine, normalement présente dans le cerveau, le sang et l'intestin.

L'équipe de M. Mallet et de Francine Côté (CNRS - Paris 6, laboratoire de génétique de la neurotransmission) vient de démontrer qu'aux premiers stades embryonnaires, la sérotonine provient de la mère.

Pour le prouver, les chercheurs ont utilisé des souris génétiquement modifiées. Certaines d'entre elles ont été privées d'un gène (gène "tph1") à l'origine de 95% de la sérotonine véhiculée par le sang. Ils ont ensuite fait des croisements génétiques pour la reproduction des animaux.

Résultats: un seul élément domine, le niveau sanguin maternel de sérotonine.

S'il est effondré, les nouveau-nés, quelle que soit leur propre capacité (normale ou défaillante) à produire cette substance, présentent des anomalies dans l'architecture cérébrale, et leur taille est de 15% à 30% inférieure par rapport à ceux issus de mères dont le niveau de sérotonine est normal. Inversement, si le niveau maternel est normal, le petit se développe normalement.

L'influence paternelle sur ce chapitre apparaît nulle.

"C'est le premier exemple chez les mammifères de la supplantation d'un gène embryonnaire par un gène maternel", selon les chercheurs.

"Cette interaction mère-enfant pose la question des grands prématurés. Il va falloir étudier avec attention le taux de sérotonine de la mère et éventuellement les effets des médicaments (antidépresseurs par exemple) qui agissent sur cette substance", estime Jacques Mallet.

"On sait que des femmes traitées pendant la grossesse avec des médicaments modifiant le taux de sérotonine ont eu des enfants présentant des troubles cardiaques", ajoute-t-il.

"Une prise en charge particulière des femmes enceintes appartenant à des familles à risque accru de pathologies pour lesquelles un lien avec une perturbation de cette substance a été suggéré (autisme, phénylcétonurie --cause de retard mental-- syndrome du colon irritable), pourrait être envisagée", suggère-t-il.

"Il existe problablement d'autres gènes maternels influant sur la formation de l'embryon à découvrir", ajoute-t-il.

08 novembre 2006

Toxicité des produits chimiques pour le cerveau des enfants trop négligée

PARIS (AFP) - Les effets toxiques des produits chimiques, dont des pesticides et des solvants, sur le développement du cerveau du foetus et de petit enfant sont en général négligés alors qu'ils pourraient avoir induit des troubles neurologiques chez des millions d'enfants dans le monde, selon des spécialistes de santé publique.
La toxicité de ces produits sur le cerveau du foetus intervient à des doses bien inférieures que pour l'adulte, notent-ils dans un article mis en ligne mercredi par la revue médicale britannique The Lancet.

Les limites d'exposition doivent tenir compte de cette sensibilité (femmes enceintes, jeunes enfants) afin de protéger le cerveau qui se développe, souligne les auteurs.

Un enfant sur six a des troubles du développement, la plupart impliquant le système nerveux, indiquent-ils.

Le Dr Philippe Grandjean (Harvard School, Boston, Etats-Unis) et son collègue le Pr Philip Landrigan (New York) ont passé en revue les données disponibles sur la toxicité de produits chimiques les plus susceptibles d'altérer le développement du cerveau.

Ils ont recensé 202 produits industriels présentant cette capacité de nuire au cerveau humain, et concluent que la pollution chimique pourrait avoir endommagé le cerveau de millions d'enfants dans le monde. Une "épidémie silencieuse" car les effets peuvent être discrets (par exemple une diminution de l'intelligence ou certaines modifications du comportement) et n'apparaissent pas dans les statistiques sanitaires.

Une toxicité sur les enfants généralement négligée, d'après eux. "Le cerveau humain est un organe précieux et vulnérable", commente Philippe Grandjean, principal auteur de l'étude. "Même des dommages limités sur cet organe peuvent avoir de sérieuses conséquences", ajoute-t-il.

La liste de 202 produits n'est pas limitative, précisent les auteurs car le nombre de produits pouvant causer des effets neurotoxiques excède le millier d'après les tests sur les animaux.

Le plomb est le premier produit dont la toxicité sur le développement du cerveau a été identifié, alors que sa neurotoxicité chez l'adulte était connue depuis des siècles.

"Même quand il y a une solide documentation sur leur toxicité, la plupart des substances ne font pas l'objet de réglementations protectrices pour le cerveau en développement", déplore le Dr Grandjean. "Quelques substances seulement comme le plomb (saturnisme) et le mercure sont contrôlées afin de protéger le foetus et le très jeune enfant", mais ce n'est pas le cas pour les 200 autres.

Les auteurs réclament, au titre de la précaution, des règles strictes pour les produits susceptibles de nuire au cerveau en formation, et leur assouplissement si le risque s'avère moins important.

24 octobre 2006

Une nouvelle technique d’imagerie révèle des differences dans le cerveau des personnes autistes

Utilisant une nouvelle forme d’imagerie cérébrale appelée «diffusion tensor imaging» (DTI), des chercheurs du Centre d’Imagerie Cognitive du Cerveau de l’université Carnegie Mellon ont découvert que la fameuse matière blanche du cerveau des personnes autistes a une intégrité structurelle plus faible que celle des individus normaux. Ceci apporte une preuve supplémentaire que les différences anatomiques qui caractérisent les cerveaux des personnes avec autisme ont une relation avec la manière dont ces cerveaux traitent l’information.

Les résultats de cette dernière étude ont été publiés dans le journal NeuroReport. Les scientifiques ont utilise la DTI — qui suit le mouvement de l’eau dans le tissu cérébral— pour mesurer l’intégrité structurelle de la matière blanche qui agit comme un câblage reliant ensemble les différentes parties du cerveau. Normalement, les molécules d’eau se déplacent, ou se diffusent, dans une direction parallèle à l’orientation des fibres nerveuses de la matière blanche. Elles sont guidées par la structure cohérence des fibres et par un processus appelé myélinisation, dans lequel une gaine est formée autour des fibres ce qui accroît la vitesse de l’influx nerveux. Le mouvement de l’eau est plus disperse si l’intégrité structurelle des tissus est faible.— c’est à dire si les fibres sont moins denses, d’une organisation moins cohérente, ou moins myélinisées — comme c’était le cas avec les participants autistes de l’étude de Carnegie Mellon. Les chercheurs ont trouvé cette désorganisation tout spécialement dans les aires autour du corps calleux, la large bande de fibres nerveuses qui connecte les deux hémisphères cérébrales.

"Cette réduction de l’intégrité de la matière blanche peut être à l’origine du type de comportements observes dans l’autisme, la limitation des intérêts et la cohérence faible des différentes pensées." Dit Marcel Just, directeur du Centre d’Imagerie Cognitive du Cerveau et co-auteur de cette dernière étude. "Les nouvelles découvertes supportent également une nouvelle théorie de l’autisme qui attribue ce trouble à une mauvaise connectivité entre les aires cérébrales," a dit Just.

En 2004, Just et ses collègues ont proposé la théorie de la mauvaise connectivité en se fondant sur une étude remarquable dans laquelle ils ont découvert des anomalies de la matière blanche qui suggérait un manque de coordination entre les aires cérébrales chez les personnes avec autisme.. Cette théorie permet d’expliquer un paradoxe de l’autisme: Certaines personnes autistes on tune capacité normale ou même supérieure dans certains domaines alors que beaucoup de leurs autres modes de pensée sont désordonnés.

L’été dernier, Just a dirigé une équipe de chercheurs qui a trouvé pour la première fois que l’anomalie de synchronisation entre les aires cérébrales a une relation avec l’anomalie dans la matière blanche. L’équipe a découvert que des portions critiques du corps calleux semblent jouer un rôle dans la mauvaise synchronisation. Chez les personnes autistes, la connectivité anatomique — fonction de la taille de la matière blanche — s’est avérée corrélée positivement avec la connectivité fonctionnelle, qui constitue la synchronisation des aires cérébrales active. Elle a aussi découvert que la connectivité fonctionnelle était moindre chez les participants atteints d’un autisme plus sévère.

Ces études, ainsi que le dernier article, apportent une image détaillée du cerveau autiste, dont les composants opèrent avec une coordination inférieure à la normale, et qui se repose moins sur les composants frontaux et plus sur les composants postérieurs. Les dernières découvertes de la DTI montrent que certains faisceaux de fibres de communication entre les aires frontales et postérieures sont anormaux, ce qui est cohérent avec un degré inférieur de coordination entre les aires frontales et postérieures.

"Les composants cérébraux de l’autiste fonctionnent plutôt comme une jam-session que comme une symphonie," a dit Just.

Cette dernière étude a été cosignée par Rajesh K. Kana et Timothy A. Keller du Centre d’Imagerie Cognitive du Cerveau. Cette recherche a été financée par l’institut National de Santé Infantile.

Source: Université Carnegie Mellon

15 octobre 2006

Les aires cérébrales ne communiquent pas efficacement chez les adultes avec autisme

ATLANTA - Un regard nouveau sur le cerveau des adultes avec autisme a fourni de nouvelles preuves que les différentes aires cérébrales des personnes atteintes par ce trouble du développement pourraient ne pas communiquer entre elles aussi efficacement qu'elles le font chez les autres.

Les chercheurs du Centre de l'Autisme de l'université de Washington annonceront aujourd'hui, lors de la réunion annuelle de la Société de Neuroscience, la première étude qui a mesuré l'activité neurale en employant l'électroencéphalographie à haute résolution (EEG) pour examiner les connexions du cortex cérébral, la partie du cerveau qui gère les processus cognitifs supérieurs.

Par comparaison avec les individus au développement normal, les scientifiques ont trouvé des modèles de connectivité anormale entre les aires cérébrales des personnes avec autisme. Ces anomalies ont montré à la fois une sur-connectivité et une sous-connectivité entre les neurones de différentes parties du cortex, selon Michael Murias, un chercheur postdoctoral qui a dirigé cette étude.

"Nos découvertes indiquent des différences de l'activité neurale coordonnée chez les adultes avec autisme," a dit Murias, "ce qui implique une communication interne réduite entre les aires cérébrales."

Les chercheurs de l'UW ont analysé les EEG de 36 adultes entre 19 à 38 ans. La moitié des adultes était atteinte d'autisme et tous avaient un QI de 80 au moins. Les EEG, qui mesurent l'activité des centaines de millions de cellules de cerveau, ont été collectés avec une rangée de 124 électrodes alors que les gens étaient assis et se relaxaient, les yeux fermés pendant deux minutes.

Les chercheurs ont trouvé des modèles de connectivité neurale supérieure à la normale dans l'hémisphère gauche, en particulier dans le lobe temporal des personnes avec autisme pour deux fréquences différentes des ondes cérébrales, dans les bandes d'ondes delta et thêta. Cette région du cerveau est associée au langage, fonction qui est altérée chez beaucoup de personnes avec autisme.

Un modèle global de connectivité neurale réduite entre les lobes frontaux et le reste du cerveau des autistes est apparu dans la bande des ondes alpha. Ces découvertes confirment plusieurs autres études utilisant l'imagerie par résonance magnétique et la tomographie par émission de positron, qui mesurent toutes les deux l'activité du cerveau en mesurant l'afflux de sang. Des études post mortem suggèrent également des défauts de communication au niveau des cellules cérébrales individuelles.

Cette sur et sous-abondance de connexions neurales suggère une communication inefficace et erratique dans le cerveau des personnes avec autisme et peut expliquer certains déficits des personnes ayant ce trouble.

Cette recherche a des applications pratiques. Murias croit que les modèles anormaux d'activité cérébrale sont un marqueur biologique potentiel d'autisme et peuvent aider à définir le phénotype, les caractéristiques principales, de l'autisme. Ses collègues de l'UW pensent que des techniques d'EEG peuvent être employées sur les enfants en bas âge pour permettre la détection précoce de l'autisme, ce qui est critique pour intervenir sur ce trouble. Les autres membres de l'équipe de recherche font partie du Centre de l'Autisme de l'UW, dont Geraldine Dawson directrice du Centre et professeur de psychologie, Sara Webb, professeur auxiliaire de psychiatrie et de sciences comportementales, Jessica Greenson, chercheuse scientifique et Kristen Merkle, assistante d'études de recherches. L'Institut National de Recherche sur la Santé Mentale pour l'Avancement de la Recherche et le Traitement de l'Autisme ainsi que la Perry Research Fellowship Endowment ont subventionné ces recherches.

L'autisme, un ensemble de troubles du développement, est le plus commun de ce type de troubles aux Etats-Unis. On estime qu'il affecte un enfant sur 166. L'autisme est caractérisé par une incapacité à communiquer et à interagir avec d'autres personnes et ceux qui en sont atteints ont habituellement des activités et des intérêts restreints.

23 août 2006

Study Provides New Insights Into Brain Organization

Scientists have provided new insights into how the brain is organised - knowledge which could eventually inform diagnosis of and treatments for conditions like Alzheimer’s Disease and autism.

A study by Newcastle University and the International University Bremen, Germany debunked a prevailing theory that the nervous system should have mainly very short nerve fibre connections between nerve cells, or neurons, to function at its most effective.

Instead the study, which carried out a sophisticated computer analysis of public databases containing detailed information of worldwide anatomical studies on primate and worm brains, found that long nerve fibre connections were just as vital to overall brain function as short ones.

Much of what we know about the human brain derives from neuroscience research on primates, which are used because they have have experienced similar evolutionary stages to humans.

Brain scans of Alzheimer’s patients and people with autism have shown that they are lacking certain long-distance neural interactions, although experts have yet to discover their specific purpose.

The new study, published in the academic journal PLoS Computational Biology, found that long fibres are important because they can send messages quickly over a longer distance compared with if the same message was sent over the same distance via lots of short fibres. It also found that long fibres are more reliable for transmission of messages over longer distances.

“You can draw parallels with a train journey from Newcastle to London,” said lead researcher, Dr Marcus Kaiser (pictured), of Newcastle University’s School of Computing Science and the University’s Institute of neuroscience.

“For example, you would get to London much more quickly and easily if you took a direct train there. However, if you had to make the journey via Durham, Leeds and Stevenage, changing trains each time, then it will take you longer to get there, and there is the possibility you would miss a connection at some point. It’s the same in the human brain.”

The computer programme, run over several days, took information about the length of nerve fibres in the primate brain and neuronal connections called axons in the brain of a species of worm known as Caenorhabditis elegans. It then tested if the total length of fibres could be reduced, by testing billions of different position arrangements. Indeed, wiring lengths could be reduced by up to 50% owing to the fact that neural systems have surprisingly many long-distance connections.

Co-researcher Dr Claus Hilgetag, an associate professor with International University Bremen’s School of Engineering and Science, said: “Many people have suggested that the brain is like a computer and that for optimum effectiveness it should have mainly short connections between the nerve cells. Our research suggests that a combination of different lengths of neural projections is essential.

“It is particularly interesting that we made the same observations in both the primate and the worm as their brains are very different in terms of shape and size.”

Although it is too early for the research to have direct clinical applications, the researchers suggest that it may eventually contribute towards insights into the diagnosis and possibly the treatment of patients with Alzheimer’s and autism if more information about neural networks - and specifically what the long and short nerve fibres do in the brain - is garnered.

One potential development could be a predictive test for the conditions, which examines and analyses a patient’s brain organisation, aiding diagnosis and possibly showing how the condition may develop over the coming years.

The study is the most comprehensive yet to look at the spatial organisation of the nervous system in primates and worms.

__________________________________

RESUME

Le cerveau des primates et des vers est très différent à la fois en taille et en volume. Pourtant les observations faites par les chercheurs de l’Université de Newcastle et de l’Université Internationale de Brême à partir des données anatomiques des cerveaux des primates et des vers sont identiques. Elles remettent en cause l’idée courante selon laquelle pour bien fonctionner un cerveau doit avoir un maximum de connexions courtes entre ses cellules avec des fibres nerveuses courtes.

L’étude montre que les fibres longues sont aussi vitales que les fibres courtes pour le fonctionnement global du cerveau car elles permettent à l’information de voyager plus vite et plus de façon plus fiable pour la transmission des messages sur de longues distances. La combinaison des connexions de différentes longueurs est essentielle à l’efficacité optimale du cerveau.

Les scanners des cerveaux de patients avec la maladie d’Alzheimer ou de personnes avec autisme ont montré qu’ils sont déficients dans certaines interactions à longue distance, bien que les experts aient encore à découvrir leur rôle spécifique.

Bien qu’il soit trop tôt pour que cette recherche débouche sur des applications cliniques, les chercheurs suggèrent que cela pourrait contribuer au diagnostic et à un traitement possible de patients avec la maladie d’Alzheimer ou de personnes avec autisme si plus d’informations sur le travail des fibres nerveuses courtes et des fibres nerveuses longues dans le cerveau, sont recueillies.

22 août 2006

Finding Adds Another Piece to Autism Puzzle

By Leslie Sabbagh

HealthDay Reporter

MONDAY, Aug. 21 (HealthDay News) -- Contrary to common medical thought, young children with autism do not have accelerated brain growth even though their brains appear enlarged, new research claims.

The finding, published in the Aug. 22 issue of Neurology, confirms some earlier reports and conflicts with others.

Dr. Stephen Dager, of the University of Washington School of Medicine, and his colleagues compared 60 autistic children to 16 children with developmental delay and 10 children with typical development. They used magnetic resonance imaging (MRI) scans to measure the transverse relaxation (T2) of gray and white matter in the children's cortexes. This measures how much water is moving around inside brain tissue, and it gives clinicians an indirect way to measure brain maturation.

The researchers found the autistic children had differences in the gray matter of their brains compared to the children with typical development. A number of studies has suggested the brains of younger children with autism are 10 percent larger, Dager explained. This new research honed in on tissue chemistry and found the abnormality wasn't due to lack of "pruning," which is how the normal developing brain rids itself of unnecessary neurons.

The abnormality is "clearly not accelerated brain growth. An alternative hypothesis could be inflammatory processes. Our data would be consistent with adult studies that found higher levels of cytokines, associated with inflammation, in postmortem studies," he explained.

A popular current theory is that autistic children have more rapid brain growth that plateaus at the age of 5 or 6. "We didn't find evidence for that, just the opposite, in fact," Dager said. "The processes that go along with brain maturation were slower in the autistic brains, particularly in gray matter."

The finding is "tantalizing," said Andrew Shih, director of research and programs at the National Alliance for Autism Research. "This is one of the first attempts to differentiate beyond volumetric difference to really look at what's behind those differences."

The field, he explained, has been "intrigued by reports last year that suggest a model of autism could be premature development or unchecked brain growth leading to disorganized circuitry. The thinking was, synaptic pruning didn't occur, so that noise became predominant over signal itself."

But Dager's study suggests gray matter development in autism involves the same volume as normal brains, but fewer neurons. "The convergence of evidence now seems to suggest a model in which gray matter abnormality could be inflammatory. T2 measures water molecules, and the findings here suggest there's more water in these kids' brains...," Shih explained.

The differences in gray matter were found only in the brains of autistic children, while both gray and white matter differences were found in the brains of children with learning delays. For children with learning delays, the findings suggest slowed neuronal development is to blame, while autistic children have a different kind of neuronal development abnormality, possibly induced by inflammation. Gray matter consists of the brain's neurons, while white matter is the brain's wiring system.

Another important finding, that gray matter seems to be affected differently in autism, supports earlier research. "There's evidence of connectivity problems at older ages; in younger ages, it seems gray matter is problematic. Autism is a developmental problem and evolves as people age," he noted.

Autism affects up to one in every 175 school-age children, according to a recent study from the U.S. Centers for Disease Control and Prevention.

The government researchers also found that boys are nearly four times more likely to be diagnosed with autism than girls, and Hispanic parents were slightly less likely than non-Hispanic whites to report a child with autism, although this may be due to cultural or other factors, including access to medical care.

In the end, the findings only add another piece to the jigsaw puzzle that is autism, Dager said, adding, "We're no closer to a treatment."

Other new research is also starting to unravel common beliefs about this disorder. In addition to social interaction problems, a study in the current issue of Child Neuropsychology found autism prevents different parts of the brain from working together. That makes complex tasks, such as tying shoelaces, much more difficult. The children studied were 8 to 15 years old.

More information

For more information on autism, go to National Institute of Mental Health (www.nimh.nih.gov ).

SOURCES: Stephen Dager, M.D., professor, radiology research, Center on Human Development and Disability, University of Washington School of Medicine, Seattle; Andrew Shih, director, research and programs, National Alliance of Autism Research, Princeton, N.J,; Aug. 22, 2006, Neurology

16 août 2006

L'autisme « affecte l'ensemble du cerveau »

Traduction de l'article de la BBC, publié le 16/08/2006, intitulé "Autism 'affects all of the brain"

L'autisme n'affecte pas simplement la façon dont les personnes entrent en relation avec autrui mais il a aussi un large éventail d'effets, ainsi que le suggère, cette étude.

Des chercheurs américains ont comparé 56 enfants avec autisme avec 56 sans autisme.

Ceux qui avaient de l'autisme se sont avérés avoir plus de problèmes avec des tâches complexes, tel qu'attacher leurs lacets, suggérant que beaucoup de secteurs du cerveau étaient affectés.

Un expert anglais de l'autisme précise que l'étude de la neuropsychologie infantile a montré combien le trouble était envahissant :

"Les difficultés sociales ont reçu beaucoup d'attention lors des recherches mais cette nouvelle étude nous rappelle que les causes de l'autisme ont des effets plus larges.", Professeur Simon Baron Cohen, Centre de Recherches sur l'Autisme.

Les personnes avec autisme sont traditionnellement considérées comme ayant des problèmes d'interaction avec autrui et des difficultés dans la communication verbale et non-verbale.

Elles peuvent également avoir des comportements stéréotypés et des intérêts très limités.

Mais cette étude suggère que l'autisme peut affecter la perception, le mouvement et la mémoire sensorielle parce qu'il empêche différentes parties du cerveau travaillant ensemble de réaliser des tâches complexes.

Lacets « difficiles »

Les enfants avec autisme de l'étude étaient tous capable de parler, de lire et d'écrire.

Tout ceux étudiés par l'équipe du Collaborative Program of Excellence étaient âgés de 8 à 15 ans.

Tandis que les enfants avec autisme réussissaient aussi bien, et même parfois mieux, que les autres enfants dans les tests de base, ils ont tous éprouvé des difficultés dans les tâches complexes.

Ainsi dans les tests visuels et spatiaux, les enfants avec autisme étaient très performants pour retrouver des petits objets dans une image complexe, ou bien pour retrouver le personnage Waldo dans les livres de la série « où est Waldo ?». Mais quand ils ont été invités à faire la différence entre les personnes qui se ressemblaient, ils ont trouvé cela très difficile.

Alors que les enfants avec autisme avaient tendance à être très bons en énonciation et en grammaire, ils ont eu plus beaucoup de mal à comprendre les figures complexes du discours, telles que les idiomes - où la signification de l'expression n'est pas identique à ce que les mots réels suggèrent.

Par exemple, ils ne comprendraient pas l'expression "casser sa pipe" signifiant que quelqu'un était mort puisqu'on ne peut être mort et être susceptible de "casser sa pipe".

Les enfants avec autisme avaient également des problèmes avec leur écriture.

Câblage « défectueux »

Nancy Minshew, une spécialiste en psychiatrie et neurologie de l'Université de Médecine de Pittsburgh , qui a mené cette recherche, a indiqué : « Ces résultats prouvent que vous ne pouvez pas compartimenter l'autisme. Il est beaucoup trop complexe".

Elle a expliqué que les chercheurs qui étudent l'autisme doivent rechercher les causes qui affectent des secteurs multiples du cerveau, plutôt que regarder simplement des secteurs reliés à la communication et aux comportement stéréotypés et compulsifs.

Le docteur Minshew a ajouté : « Notre étude suggère fortement que l'autisme n'est pas principalement un désordre d'interaction sociale mais un désordre global affectant la façon dont le cerveau traite l'information qu'il reçoit - particulièrement quand l'information devient compliquée. »

L'équipe avait précédemment trouvé, en regardant des scanners de cerveau, que les personnes avec autisme avaient des anomalies dans le câblage neurologique par lequel différents secteurs du cerveau communiquent.

Elle a dit que ces anomalies étaient susceptibles d'expliquer pourquoi les enfants avec autisme dans l'étude ont eu des problèmes avec des tâches complexes mais ont bien réussi dans les tâches qui ont seulement exigé la mobilisation d'une seule région du cerveau.

Professeur Simon baron Cohen, chef du Centre de Recherches sur l'Autisme de Cambridge, a dit : « Cette nouvelle étude est importante car elle ne se limite pas au fonctionnement atypique dans des domaines sociaux et non-sociaux, des personnes qui sont dans le spectre autistique.

« Précédemment les difficultés sociales ont suscité beaucoup d'attention de recherches.

« Mais cette nouvelle étude nous rappelle que les causes de l'autisme ont bien plus d'effets. »

BBC, 2006

Autism 'affects all of the brain'

Autism does not simply affect how people relate to others but has a wide range of effects, a study suggests.

US researchers compared 56 children with autism with 56 who did not have the condition.

Those with autism were found to have more problems with complex tasks, such as tying their shoelaces, suggesting many areas of the brain were affected.

A UK autism expert said the Child Neuropsychology study showed how pervasive the condition was.


The social difficulties have received a great deal of research attention but this new study reminds us that the causes of autism have more pervasive effects
Professor Simon Baron Cohen, Autism Research Centre

People with autism are traditionally identified as having problems interacting with others and with both verbal and non-verbal communication.

They can also display repetitive behaviours and have very focused interests.

But this study suggests autism can affect sensory perception, movement and memory because it prevents different parts of the brain working together to achieve complex tasks.

Shoelaces 'difficult'

The children with autism all had the ability to speak, read and write.

All those studied by the team from the Collaborative Program of Excellence in Autism were aged eight to 15.

While children with autism performed as well as, and sometimes better than, the other children in basic tests, they all had trouble with complex tasks.

So in the visual and spatial skills tests, children with autism were very good at finding small objects in a busy picture, such as finding the character Waldo in the "Where's Waldo" picture books series.

But when they were asked to tell the difference between similar-looking people, they found it very difficult.

And while children with autism tended to be very good at spelling and grammar, they found it much harder to understand complex figures of speech, such as idioms - where the meaning of the phrase is not the same as the actual words suggest.

For example, they would not understand "He kicked the bucket" as meaning someone had died and were likely to actually hop if told to "hop it".

Children with autism also had problems with their handwriting.

'Faulty' wiring

Nancy Minshew, a specialist in psychiatry and neurology at the University of Pittsburgh School of Medicine, who led the research, said: "These findings show that you cannot compartmentalise autism. It's much more complex.

She said researchers investigating autism needed to look for causes that affect multiple brain areas, rather than simply looking at areas related to communication and repetitive behaviours or obsessive interests.

Dr Minshew added: "Our paper strongly suggests that autism is not primarily a disorder of social interaction but a global disorder affecting how the brain processes the information it receives - especially when the information becomes complicated."

The team has previously found, through looking at brain scans, that people with autism have abnormalities in the neurological wiring through which brain areas communicate.

She said these abnormalities were the most likely explanation for why the children with autism in the current study had problems with complex tasks but did well in tasks that only required one region of the brain.

Professor Simon Baron Cohen, head of the Autism Research Centre in Cambridge, said: "This new study is important in highlighting atypical functioning in both social and non-social domains, by people with autism spectrum conditions.

"Previously the social difficulties have received a great deal of research attention.

"But this new study reminds us that the causes of autism have more pervasive effects."

© BBC MMVI

19 juillet 2006

Les autistes males ont moins de neurones dans l’amygdale

Par David Biello, Scientific American

De nombreux garçons et hommes atteints d’autisme souffrent d’une diminution de leurs capacités de communication et sociales réduites. Ils pourraient aussi souffrir d’un manque de neurones dans l’amygdale, selon les découvertes d’une nouvelle étude. David Amaral et Cynthia Mills Schumann de l’université de Californie à Davis, ont étudié le nombre de neurones dans l’amygdale de neuf autistes mâles et de 10 mâles non-autistes dont les âges variaient entre 10 to 44 ans. Comptant péniblement leur nombre sous un microscope, ils ont observé une quantité significativement moindre de neurones (des cellules de signalisation électrique) dans cette zone du cerveau associée à la peur et la mémoire.

"C’est la première preuve quantitative d’un nombre anormal de neurones dans l’amygdale des autistes," note Amaral. "Nous avons pu analyser post-mortem plus du double de cerveaux qu’avant, dont aucun n’avait eu d’attaque ou autres troubles neurologiques, mis à part l’autisme.

Des études précédentes s’étaient appuyées sur des mesures de densité des neurones ainsi que sur le cerveau d’autistes mâles ayant eu des attaques épileptiques--un état que l’ont sait provoquer des défauts de l’amygdale. Amaral et Schumann ont compté des neurones avec une sonde tridimensionnelle à fort grossissement. Ils ont trouvé que bien qu’il n’y ait pas de variation dans le volume de l’amygdale, celle du groupe des autistes mâles avait globalement 1,5 million de neurones en moins que celle de leurs pairs.

D’autres études utilisant l’imagerie cérébrale ont montré que les garçons autistes développent une amygdale adulte vers l’âge de huit ans, alors que les autres garçons l’atteignent à l’adolescence. On ne sait pas encore s’il y a d’autres régions du cerveau des autistes qui pourraient avoir un déficit de neurones. "Il est possible qu’il y ait toujours moins de neurones dans l’amygdale des personnes atteintes d’autisme. Il est aussi possible qu’un processus de dégénérescence se déclenche plus tard dans la vie et conduise à une perte de neurones," dit Schumann. "Des études complémentaires sont nécessaires pour affiner nos découvertes." Celles-ci sont publiées dans un article qui paraît aujourd’hui dans le Journal of Neuroscience.

Un pas de plus dans la recherche sur l’autisme

Laurent Suply (lefigaro.fr)

Les causes de ce trouble psychologique sont encore loin d’être élucidées, mais une étude américaine publié mercredi dans le Journal of Neuroscience démontre que les personnes souffrant d’autisme ont moins de neurones dans une zone du cerveau dont dépend l’expression des émotions et le comportement social.

Dix-neuf cerveaux appartenant à des personnes décédées de 10 et 44 ans, dont neuf souffraient d’autisme, ont été examinés par les chercheurs de l’université américaine de Californie. Grâce à une technique nommée « analyse stéréologique », ces chercheurs ont pu dénombrer les neurones des cerveaux dans une zone appelée « amygdale », pour sa forme d’amande. Résultat: les autistes possèdent un nombre significativement inférieur de neurones dans cette région du cerveau, une conclusion qui vient confirmer le lien pressenti entre cette zone et l’autisme.


Le lien entre l’autisme et l’amygdale était déjà pressenti


L’amygdale est une partie du cerveau qui intervient notamment dans le processus de mémorisation des émotions et dans le développement des comportements sociaux. Elle intervient par exemple dans l’apprentissage de la peur. Elle sert également à décrypter les émotions de nos proches. Une étude précédente a montré que l’amygdale s’active lorsqu’il s’agit de deviner les émotions d’autrui en regardant les expressions de son visage. Chez les sujets autistes, l’activation de cette zone n’a pas lieu dans cette situation.


« Ces découvertes complètent d’autres études qui suggéraient que des anomalies de l’amygdale contribuaient significativement au déficit de fonctions sociales » qui définissent l’autisme, explique Emanuel DiCicco-Bloom, professeur de neurologie pédiatrique à l’Université de médecine du New Jersey. Le résultat de l’étude, publiée par le Journal of Neuroscience est jugé « un peu surprenant » par Cynthia Schumann, un des auteurs de l’étude. Des études d’imagerie magnétique antérieures avaient montré que l’amygdale était sensiblement plus grosse en volume chez les jeunes garçons souffrant d’autisme que les sujets « sains ».


Prochaine étape : observer l’évolution des neurones tout au long de la vie


Grâce à l’étude de l’Université de Californie, le lien semble désormais certain. Mais elle n’assure pas pour autant que la déficience de l’amygdale soit la cause de l’autisme. Plusieurs hypothèses sont envisagées. Le déficit neuronal peut tout d’abord dater de la naissance du sujet, ou au contraire découler d’un processus de dégénérescence causant l’autisme. Autre possibilité, l’atrophie neuronale de l’amygdale est la conséquence de l’autisme : à force de ne pas être « utilisés » par le malade, les neurones chargés des émotions disparaissent. Une telle perte pourrait enfin être causée par le très haut niveau d’anxiété ressenti par les intéressés.


Le lien mystérieux entre l’amygdale et ce trouble du comportement devra donc être exploré plus avant. Pour ce faire, l’une des pistes consiste à développer des techniques permettant de compter les neurones de personnes en vie, afin d’observer l’évolution de leur quantité chez des jeunes sujets autistes. La recherche sur ce trouble psychologique est « un processus à plusieurs étapes », souligne David Amaral, autre membre du groupe d’étude, qui ajoute : « Au moins, nous en avons franchi une de plus ».

12 juillet 2006

Researchers gain insight into why brain areas fail to work together in autism

Researchers have found in two studies that autism may involve a lack of connections and coordination in separate areas of the brain.

In people with autism, the brain areas that perform complex analysis appear less likely to work together during problem solving tasks than in people who do not have the disorder, report researchers working in a network funded by the National Institutes of Health. The researchers found that communications between these higher-order centers in the brains of people with autism appear to be directly related to the thickness of the anatomical connections between them.

In a separate report, the same research team found that, in people with autism, brain areas normally associated with visual tasks also appear to be active during language-related tasks, providing evidence to explain a bias towards visual thinking common in autism.

"These findings provide support to a new theory that views autism as a failure of brain regions to communicate with each other," said Duane Alexander, M.D., Director of NIH's National Institute of Child Health and Human Development. "The findings may one day provide the basis for improved treatments for autism that stimulate communication between brain areas."

The studies and the theory are the work of Marcel Just, Ph.D., D.O. Hebb Professor of Psychology at Carnegie Mellon University in Pittsburgh, Pennsylvania, and Nancy Minshew, M.D., Professor of Psychiatry and Neurology at the University of Pittsburgh School of Medicine and their colleagues. The research was conducted by the Collaborative Program of Excellence in Autism, a research network funded by the NICHD and the National Institute on Deafness and Other Communication Disorders.

People with autism often have difficulty communicating and interacting socially with other people. The saying "unable to see the forest for the trees" describes how people with autism frequently excel at details, yet struggle to comprehend the larger picture. For example, some children with autism may become spelling bee champions, but have difficulty understanding the meaning of a sentence or a story.

An earlier finding by these researchers described how a group of people with autism tended to use parts of the brain typically associated with processing shapes to remember letters of the alphabet. A news release detailing that finding appears at http://www.nichd.nih.gov/new/releases/final_autism.cfm.

Participants with autism in both current studies had normal I.Q. There were no significant differences between the participants with and without autism in age or I.Q.

The first of the two new studies recently was published online in the journal Cerebral Cortex. In that study, the researchers used a brain imaging technique known as functional magnetic resonance imaging, or fMRI, to view the brains of people with autism as well as a comparison group of people who do not have autism. All of the study participants were asked to complete the Tower of London test. The task involves moving three balls into a specified arrangement in an array of three receptacles. The Tower of London is used to gauge the functioning of the prefrontal cortex.

This brain area, located in the front, upper part of the brain, deals with strategic planning and problem-solving. The prefrontal cortex is the executive area of the brain, in which decision making, judgment, and impulse control reside.

A little further back is the parietal cortex, which controls high-level visual thinking and visual imagery, supporting the visual aspects of the problem-solving. Both the prefrontal and parietal cortex play a critical part in performing the Tower of London test.

In the normal participants, the prefrontal cortex and the parietal cortex tended to function in synchrony (increasing and decreasing their activity at the same time) while solving the Tower of London task. This suggests that the two brain areas were working together to solve the problem.

In the participants with autism, however, the two brain areas, prefrontal and parietal, were less likely to function in synchrony while working on the task.

The researchers made another discovery, for the first time finding a relationship between this lower level of synchrony and the properties of some of the neurological "cables" or white matter fiber tracts that connect brain areas.

White matter consists of fibers that, like cabling, connect brain areas. The largest of the white matter tracts is known as the corpus callosum, which allows communication between the two hemispheres (halves) of the brain.

"The size of the corpus callosum was smaller in the group with autism, suggesting that inter-regional brain cabling is disrupted in autism," Dr. Just said.

In essence, the extent to which the two key brain areas (prefrontal and parietal) of the autistic participants worked in synchrony was correlated with the size of the corpus callosum. The smaller the corpus callosum, the less likely the two areas were to function in synchrony. In the normal participants, however, the size of the corpus callosum did not appear to be correlated with the ability of the two areas to work in synchrony.

"This finding provides strong evidence that autism is a disorder involving the biological connections and the coordination of processing between brain areas," Dr. Just said.

He added, however, that the thickness, or extent, of connections between brain areas may not be the basis for the disorder. Although the neurological connections between the prefrontal cortex appear to be reduced in autism, the brains of people with autism have thicker connections between certain brain regions within each hemisphere.

"At this point, we can say that autism appears to be a disorder of abnormal neurological and informational connections of the brain, but we can't yet explain the nature of that abnormality," Dr. Just said.

In the second study, published online in the journal Brain, the researchers examined the extent to which brain areas involved in language interact with brain regions that process images. Dr. Just explained that earlier studies, as well as anecdotal accounts, suggest that people with autism rely more heavily on visual and spatial areas of the brain than do other people.

In this study, the researchers used fMRI to examine brain functioning in participants with autism and in normal participants during a true-false test involving reading sentences with low imagery content and high imagery content. A typical low imagery sentence consisted of constructions like "Addition, subtraction, and multiplication are all math skills." A high imagery sentence, "The number eight when rotated 90 degrees looks like a pair of eyeglasses," would first activate left prefrontal brain areas involved with language, and then would involve parietal areas dealing with vision and imagery as the study participant mentally manipulated the number eight.

As the researchers expected, the visual brain areas of the normal participants were active only when evaluating sentences with imagery content. In contrast, the visual centers in the brains of participants with autism were active when evaluating both high imagery and low imagery sentences.

"The heavy reliance on visualization in people with autism may be an adaptation to compensate for a diminished ability to call on prefrontal regions of the brain," Dr. Just said.

The second study also confirmed the observations in the first study--that the prefrontal and parietal brain regions of the cortex in people with autism were less likely to work in synchrony than were the brains of normal volunteers. The second study also confirmed that the extent to which the two parts of the cortex could work together was correlated with the size of the corpus callosum that connected them. Dr. Just and his colleagues are conducting additional studies to ascertain the nature of the abnormality of the connections in the brains of people with autism.

09 août 2005

L’autisme est-il une forme extrême de la masculinité ?

Article de Simon Baron-Cohen The New York Times

Traduction de Danièle Langloys

Deux importants débats ont beaucoup attiré l’attention l’an dernier. L’un concerne les causes de l’autisme, alors que l’autre vise les différences quant aux aptitudes scientifiques entre les sexes. Au risque d’ ajouter de l ’huile sur les deux feux, je soumets l’idée que ces deux axes de recherche ont beaucoup en commun. En étudiant les différences entre les cerveaux masculin et féminin, nous pouvons apporter des aperçus significatifs sur le mystère de l’autisme.

Alors Lawrence Summers, le président de l’Université d’Harvard, avait-il raison de remarquer que les femmes, par nature, avaient moins d’aptitudes que les hommes à être des scientifiques de haut niveau ? A en juger par la recherche actuelle, oui et non. Il est vrai que les scientifiques ont montré les différences physiologiques et psychologiques entre cerveau masculin et cerveau féminin. Mais Summers avait tort d’en déduire que ces différences rendent une femme moins capable individuellement qu’un homme de devenir un scientifique de haut niveau.
En fait, les différences qui ressortent dans la recherche sur le cerveau reflètent des moyennes, c’est-à-dire qu’elles apparaissent seulement si on étudie des groupes d’hommes et de femmes et qu’on compare les moyennes des deux groupes sur des tests psychologiques ou des mesures physiologiques particuliers. A ce jour, ce qui ressort ne nous dit rien sur les individus, c’est-à-dire que si vous êtes une femme, il n’est pas sûr d’en inférer que vous ne pourriez jamais devenir un prix Nobel dans le domaine de recherche scientifique que vous avez choisi. Un bon scientifique est un bon scientifique, quel que soit le sexe.
Cependant, avec l’imagerie cérébrale, on peut observer des différences entre le cerveau moyen d’un homme et celui d’une femme. Par exemple, le cortex moyen d’un homme ( la partie en haut du cerveau concernée par l’activité intellectuelle de haut niveau) est de 9% plus gros que celui d’une femme. De même, bien que moins distinct, on trouve une différence positive de taille dans tous les lobes du cerveau masculin. En moyenne, les hommes ont aussi une amygdale plus importante ( structure en forme d’amande au centre du cerveau impliquée dans les processus de peur et de l’émotion) et plus de cellules nerveuses. Comment exactement ces différences de taille affectent le fonctionnement, si du moins c’est le cas, n’est pas encore connu.

Chez les femmes cependant, les connexions qui permettent la communication entre les deux hémisphères du cerveau ont tendance à être plus denses, ce qui facilite peut-être les échanges. Cela peut expliquer pourquoi une étude de l’Université de Yale a trouvé que dans l’ exécution des activités langagières, les femmes probablement activent les deux hémisphères alors que les hommes, en moyenne, activent seulement l’hémisphère gauche.

Des tests psychologiques révèlent aussi des exemples de différence entre les sexes. En moyenne, les hommes terminent plus vite et avec un score plus élevé que les femmes un test qui demande à celui qui le passe de visualiser l’apparence d’un objet après qu’il a tourné en trois dimensions. La même chose est vraie pour des tests de lecture de carte et pour les tests de figures encastrées qui demandent aux sujets de trouver une forme de pièce cachée dans un dessin plus grand. Les hommes sont surreprésentés dans les pourcentages élevés aux tests mathématiques de niveau universitaire et ont tendance à obtenir des scores plus élevés dans les tests de mécanique que les femmes. Les femmes, en revanche, font en moyenne des scores plus élevés que les hommes aux tests de reconnaissance des émotions, de perception sociale et de capacités langagières.

Beaucoup de ces différences entre les sexes s’observent chez des adultes, ce qui pourrait conduire à la conclusion que tout ce qu’elles reflètent, ce sont des différences de socialisation et d’expérience. Mais quelques différences s’observent de manière extrêmement précoce dans le développement, ce qui peut suggérer que la biologie joue aussi un rôle. Par exemple, les filles ont tendance à parler plus tôt que les garçons, et dans la seconde année de leur vie, leur vocabulaire augmente plus rapidement. Les filles d’un an ont plus de contacts visuels que les garçons de leur âge.

Dans mon travail, j’ai résumé ces différences en disant que les hommes en moyenne instinctivement systématisent mieux et que les femmes ont plus d’ empathie. La systématisation entraîne l’identification des lois qui gouvernent le fonctionnement d’un système. Une fois qu’on connaît les lois, on peut contrôler le système ou prédire son comportement. L’empathie, elle, entraîne la reconnaissance de ce qu’une autre personne peut être en train de ressentir ou de penser, et la réponse à ces sentiments avec une émotion personnelle appropriée.

Et l’autre affirmation de Summer que de telles différences entre les sexes sont innées ? Nous savons que la culture joue un rôle dans la différenciation sexuelle mais la biologie aussi. Par exemple, au premier jour de la vie, les nouveau-nés garçons et filles font attention à des choses différentes. En moyenne, à l’âge d’un jour, plus de garçons vont regarder un mobile suspendu au-dessus d’eux, alors que plus de filles vont regarder un visage humain.

On a aussi trouvé que la quantité de testostérone prénatale, qui est produite par le fœtus et mesurable dans le liquide amniotique où baigne le bébé dans l’utérus, prédit comment un enfant sera sociable. Plus le niveau de testostérone est élevé, moins l’enfant manifestera de contacts visuels tout-petit et plus lentement il développera le langage. C’est relié au rôle de la testostérone fœtale dans l’influence sur le développement du cerveau.

Les hommes produisent manifestement beaucoup plus de testostérone prénatale que les femmes, mais les niveaux varient considérablement même à l’intérieur du même sexe. En fait, ce n’est pas le sexe en lui-même qui détermine quel type de cerveau on a, mais le niveau d’hormone prénatale. A partir de là, c’ est un petit bond vers l’idée intrigante qu’un homme peut avoir un cerveau typiquement féminin ( si son niveau de testostérone est bas), alors qu’une femme peut avoir un cerveau typiquement masculin ( si son niveau de testostérone est élevé).

Qu’est-ce que tout cela peut avoir à voir avec l’autisme ? En accord avec ce que j’ai appelé la théorie du cerveau masculin extrême de l’autisme, les personnes avec autisme simplement vont avec un profil masculin extrême, avec une tendance particulièrement forte à systématiser et une inhabituellement basse à l’empathie.

Et cette analyse a un sens. Elle aide à expliquer l’incapacité sociale dans l’autisme, parce que les difficultés d’empathie rendent plus difficile de construire et maintenir des relations avec les autres. Elle explique aussi les îlots de capacité que les personnes avec autisme manifestent dans des sujets comme les maths, la musique ou le dessin – toutes aptitudes qui bénéficient de la systématisation.

Les personnes avec autisme développent souvent des obsessions qui peuvent n’ être rien d’autre qu’une intense systématisation à l’œuvre. Les enfants peuvent devenir obsédés par des interrupteurs électriques ( un système électrique), ou des horaires de train (un système temporel) ou des objets qui tournent (un système physique), ou les noms des poissons des fonds marins (un système naturel, taxinomique). Les enfants avec un autisme sévère qui peuvent avoir des difficultés d’apprentissage associées et peu d’ aptitudes verbales, peuvent exprimer leurs obsessions par des bonds constants sur un trampoline ou en tournant sur eux-mêmes parce que le mouvement est extrêmement appuyé sur des lois et prévisible. Quelques enfants avec un autisme sévère alignent des objets pendant des heures de suite. Ce qui a l’habitude d’être écarté par les cliniciens comme « sans but, conduite répétitive, peut en fait être le signe d’un esprit qui est extrêmement adapté pour systématiser.

Il faut être extrêmement prudent quand on avance une cause de l’autisme, parce que ce domaine abonde en théories qui se sont écroulées sous l’effet d ’un examen minutieux de l’expérience. Cependant, mon hypothèse est que l’ autisme est le résultat génétique d’un appariement par similarité entre des parents qui sont tous les deux fortement aptes à systématiser. L’expression convient quand le semblable est attiré par le semblable, et il y a quatre raisons importantes de croire que les choses se passent ainsi:

  1. à la fois les mères et les pères d’enfants avec autisme terminent le test des figures encastrées plus vite que les hommes et les femmes de la population générale.
  2. à la fois les mères et les pères d’enfants avec autisme ont plus fréquemment des pères qui ont des talents de systématisation (ingénieurs par exemple).
  3. quand on observe l’activité du cerveau par imagerie (RMN), les hommes et les femmes en moyenne montrent des schémas différents quand ils font des tâches de systématisation ou d’empathie. Mais à la fois les mères et les pères d’enfants avec autisme montrent des modèles fortement masculins d’ activité cérébrale.
  4. à la fois les mères et les pères d’enfants avec autisme obtiennent des scores supérieurs à la moyenne à un questionnaire qui mesure combien un individu a de traits autistiques. Ces résultats suggèrent une cause génétique de l’autisme avec une contribution génétique des deux parents qui se rapporte finalement à une forme similaire d’esprit : celle avec une affinité pour la pensée organisée de manière systématisée.

Pour vérifier pleinement cette théorie, nous avons encore besoin de beaucoup de travail. Les gènes spécifiques en cause doivent être identifiés. C’est une théorie qui peut être discutée et peut-être mal reçue parmi ceux qui croient que la cause de l’autisme est partiellement ou totalement environnementale. Mais la controverse n’est pas une raison pour ne pas la vérifier – systématiquement, pourrions-nous dire.


Simon Baron-Cohen est directeur du centre de recherche sur l’autisme à l’ université de Cambridge et l’auteur de « La différence essentielle : la vérité au sujet du cerveau masculin et féminin ».

19 août 2004

Une anomalie dans la réponse cérébrale à la perception de la voix humaine dans l'autisme

Une étude menée au sein de l'équipe mixte Inserm-CEA « Imagerie Cérébrale en Psychiatrie » au Service Hospitalier Frédéric Joliot révèle une incapacité des autistes à activer les aires cérébrales spécifiques de la reconnaissance de la voix humaine. Ces résultats étayent l'hypothèse selon laquelle les difficultés des autistes seraient liées à un déficit de la perception des stimuli sociaux.

Une étude menée au sein de l'équipe mixte Inserm-CEA « Imagerie Cérébrale en Psychiatrie » au Service Hospitalier Frédéric Joliot [ En collaboration avec le Centre de Recherche en Neuropsychologie et Cognition (CERNEC) et l'Université de Montréal] révèle une incapacité des autistes à activer les aires cérébrales spécifiques de la reconnaissance de la voix humaine. Ces résultats étayent l'hypothèse selon laquelle les difficultés des autistes seraient liées à un déficit de la perception des stimuli sociaux. Le détail de cette étude est publié dans le numéro d'août de la revue Nature Neuroscience.

La voix humaine est riche en informations verbales mais aussi non-verbales : elle constitue un véritable "visage auditif" que nous savons interpréter. Nos capacités à percevoir ces informations vocales jouent un rôle crucial dans nos interactions sociales. De plus, une équipe de chercheurs a mis en évidence, par l'imagerie cérébrale fonctionnelle, que la perception vocale implique des régions corticales spécifiques appelées "aires de la voix", situées chez la plupart des individus le long du sillon temporal supérieur.

L'autisme est une pathologie sévère du développement de l'enfant qui se caractérise par des difficultés dans les interactions sociales. Des études comportementales ont permis d'observer également un déficit dans la perception de la voix humaine. Afin de préciser les bases cérébrales de cette pathologie, les chercheurs de l'équipe mixte Inserm-Cea ont étudié par imagerie fonctionnelle (IRM fonctionnelle) comment le cerveau des sujets autistes adultes perçoit la voix humaine par rapport à d'autres sons. Pour cela, l'activité cérébrale de cinq adultes atteints d'autisme et de huit volontaires sains a été enregistrée alors qu'ils écoutaient des séquences de sons alternant la voix humaine (parole, cri, rire, pleur, chant) et d'autres types de sons non vocaux (animaux, cloches, instruments de musique, voitures etc…).

Les résultats obtenus révèlent chez les autistes une absence d'activation de l'aire spécifique de la perception de la voix ("aire de la voix"). Chez ces sujets, les aires cérébrales activées sont exactement les mêmes, qu'il s'agisse de voix humaines ou de sons non vocaux. Aucune activation cérébrale spécifique d'une reconnaissance de la voix humaine n'a pu être mise en évidence. Par ailleurs, à la question « qu'avez-vous entendu pendant l'examen ? », les autistes ne rapportent que 8,5% de sons vocaux contre 51,2% pour les témoins, confirmant leur faible capacité à reconnaître des voix humaines.

De précédentes études dans le domaine visuel en IRM fonctionnelle avaient déjà révélé chez les autistes une absence d'activation de l'aire spécialisée dans le traitement des visages. Cette étude sur la voix, stimulus auditif riche en informations sur l'identité et l'état émotionnel de l'interlocuteur, met cette fois en évidence un trouble de la perception sociale dans le domaine auditif.

Ces anomalies du traitement de la voix et des visages suggèrent que les difficultés des autistes à comprendre l'état émotionnel d'autrui et à interagir avec lui pourraient être liées à un déficit de la perception des stimuli sociaux. Ces résultats en imagerie fonctionnelle apportent de nouvelles perspectives pour comprendre les perturbations des interactions sociales dans l'autisme. Enfin, la mise en évidence de ces déficits perceptifs pourrait permettre l'élaboration de stratégies de rééducation visant à induire un traitement spécifique des informations vocales et faciales, traitement qui semble ne pas s'être développé spontanément chez l'autiste.

Ce travail a été financé par la Fondation de France et Fondation France-Télecom (mécénat autisme)

Source : Nature Neuroscience, vol 7, n°8, p 801-802, août 2004

"Abnormal Cortical Voice Processing in Autism"

Hélène Gervais1, Pascal Belin2,3, Nathalie Boddaert 1,4, Marion Leboyer5, Arnaud Coez1, Ignacio Sfaello1, Catherine Barthélémy6, Francis Brunelle 1,4, Yves Samson 1,7 and Monica Zilbovicius1

1. ERM 0205, Inserm-CEA, DRM, DSV, Service Hospitalier Frédéric Joliot, Orsay

2. Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal

3. Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal

4. Service de Radiologie Pédiatrique, Hôpital Necker Enfants Malades, Paris

5. Service de Psychiatrie, Hôpital Henri-Mondor, Créteil

6. Inserm - Unité 619, CHU Bretonneau, Tours

7. Service des Urgences Cérébro-Vasculaires, Groupe Hospitalier Pitié-Salpêtrière, Paris

Vidéo