07 mai 2021

Détection visuelle et compétences de décodage de la photographie aérienne par des adultes avec uin diagnostic de "troubles du spectre de l'autisme" (dTSA)

 Aperçu: G.M.

Malgré les défis dans les compétences de communication sociale, les personnes avec un dTSA affichent souvent des forces dans le traitement visuel.
L'analyse de la photographie aérienne est une profession qui repose sur de solides compétences en traitement visuel qui correspondent à ce profil unique.
Nous avons étudié la vision de base et les tâches visuelles «réelles» chez 20 jeunes adultes avec un dTSA et 20 «jeunes» avec un développment typique (TD). Les tests de vision de base comprenaient la recherche visuelle, les figures incorporées et la vigilance; Les tests «vie réelle» comprenaient la détection et l'identification de photographies aériennes. 

Les groupes se sont aussi bien comportés et ne différaient pas de manière significative sur aucune tâche. L'étude démontre de solides compétences visuelles chez les personnes avec un dTSA dans des contextes de base et de la «vie réelle», et soutient l'idée qu'elles peuvent être bien adaptés à l'emploi dans des professions qui exigent des compétences de perception visuelle élevées telles que l'analyse de la photographie aérienne.

Visual Detection and Decoding Skills of Aerial Photography by Adults with Autism Spectrum Disorder (ASD)

Affiliations

Abstract

Despite challenges in social communication skills people with ASD often display strengths in visual processing. Aerial photography analysis is an occupation reliant on strong visual processing skills that matches this unique profile. We investigated basic-vision and "real-life" visual tasks in 20 cognitively-able young adults with ASD and 20 typically-developed (TD) "gamers". Basic-vision tests included Visual-Search, Embedded-Figures, and Vigilance; "real-life" tests included aerial-photograph detection and identification. Groups performed equally well, and did not differ significantly on any tasks. The study demonstrates strong visual skills in people with ASD in basic and "real-life" settings, and supports the idea that they may be well suited for employment in occupations that demand high visual perception skills such as aerial photography analysis.

Keywords: Autism spectrum disorders; Cognition (attention, learning, memory); Visual decoding; Visual perception; Visual search; Vocational/labor force participation.

References

    1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Pub. - DOI
    1. Ashwin, E., Ashwin, C., Rhydderch, D., Howells, J., & Baron-Cohen, S. (2009). Eagle-eyed visual acuity: an experimental investigation of enhanced perception in autism. Biological Psychiatry, 65(1), 17–21. https://doi.org/10.1016/j.biopsych.2008.06.012 - DOI - PubMed
    1. Bach, M., & Dakin, S. C. (2009). Regarding “Eagle-eyed visual acuity: an experimental investigation of enhanced perception in autism”. Biological Psychiatry. United States. https://doi.org/10.1016/j.biopsych.2009.02.035
    1. Baldassi, S., Pei, F., Megna, N., Recupero, G., Viespoli, M., Igliozzi, R., et al. (2009). Search superiority in autism within, but not outside the crowding regime. Vision Research, 49(16), 2151–2156. https://doi.org/10.1016/j.visres.2009.06.007 - DOI - PubMed
    1. Baldwin, S., Costley, D., & Warren, A. (2014). Employment activities and experiences of adults with high-functioning autism and Asperger’s Disorder. Journal of Autism and Developmental Disorders, 44(10), 2440–2449. https://doi.org/10.1007/s10803-014-2112-z - DOI - PubMed
    1. Baron-Cohen, S. (2017). Editorial Perspective: Neurodiversity—A revolutionary concept for autism and psychiatry. Journal of Child Psychology and Psychiatry and Allied Disciplines, 58(6), 744–747. https://doi.org/10.1111/jcpp.12703 - DOI
    1. Baron-Cohen, S., Wheelwright, S., Stone, V., & Rutherford, M. (1999). A mathematician, a physicist and a computer scientist with Asperger syndrome: Performance on folk psychology and folk physics tests. Neurocase, 5(6), 475–483. https://doi.org/10.1080/13554799908402743 - DOI
    1. Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147–163. https://doi.org/10.1016/j.neuron.2019.09.031 - DOI - PubMed
    1. Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., & Minshew, N. (2006). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–129. https://doi.org/10.1016/j.neuropsychologia.2005.04.002 - DOI - PubMed
    1. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57(1), 289–300
    1. Boeschoten, M. A., Kenemans, J. L., van Engeland, H., & Kemner, C. (2007). Abnormal spatial frequency processing in high-functioning children with pervasive developmental disorder (PDD). Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118(9), 2076–2088. https://doi.org/10.1016/j.clinph.2007.05.004 - DOI
    1. Bury, S. M., Hedley, D., Uljarević, M., Dissanayake, C., & Gal, E. (2019). If you’ve employed one person with autism …: An individual difference approach to the autism advantage at work. Autism, 23(6), 1607–1608. https://doi.org/10.1177/1362361318794937 - DOI - PubMed
    1. Bury, S. M., Hedley, D., Uljarević, M., & Gal, E. (2020). The autism advantage at work: A critical and systematic review of current evidence. Research in Developmental Disabilities, 105, 103750 - DOI
    1. Caldwell-Harris, C. L., & Jordan, C. J. (2014). Systemizing and special interests: Characterizing the continuum from neurotypical to autism spectrum disorder. Learning and Individual Differences, 29, 98–105. https://doi.org/10.1016/j.lindif.2013.10.005 - DOI
    1. Chen, J. L., Leader, G., Sung, C., & Leahy, M. (2015). Trends in employment for individuals with autism spectrum disorder: A review of the research literature. Review Journal of Autism and Developmental Disorders, 2(2), 115–127. https://doi.org/10.1007/s40489-014-0041-6 - DOI
    1. Constable, P. (2010). Crowding and visual search in high functioning adults with autism spectrum disorder. Clinical Optometry. https://doi.org/10.2147/opto.s11476 - DOI
    1. de Jonge, M. V., Kemner, C., de Haan, E. H., Coppens, J. E., van den Berg, T. J. T. P., & van Engeland, H. (2007). Visual information processing in high-functioning individuals with autism spectrum disorders and their parents. Neuropsychology, 21(1), 65–73. https://doi.org/10.1037/0894-4105.21.1.65 - DOI - PubMed
    1. de Jonge, M. V., Kemner, C., & van Engeland, H. (2006). Superior disembedding performance of high-functioning individuals with autism spectrum disorders and their parents: The need for subtle measures. Journal of Autism and Developmental Disorders, 36(5), 677–683. https://doi.org/10.1007/s10803-006-0113-2 - DOI - PubMed
    1. Eaves, L. C., & Ho, H. H. (2008). Young adult outcome of autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(4), 739–747. https://doi.org/10.1007/s10803-007-0441-x - DOI - PubMed
    1. Gal, E., Landes, E., & Katz, N. (2015a). Work performance skills in adults with and without high functioning autism spectrum disorders (HFASD). Research in Autism Spectrum Disorders, 10, 71–77. https://doi.org/10.1016/j.rasd.2014.10.011 - DOI
    1. Gal, E., Selanikyo, E., Erez, A. B. H., & Katz, N. (2015b). Integration in the vocational world: How does it affect quality of life and subjective well-being of young adults with ASD. International Journal of Environmental Research and Public Health, 12(9), 10820–10832. https://doi.org/10.3390/ijerph120910820 - DOI - PubMed - PMC
    1. Goldfarb, Y., Gal, E., & Golan, O. (2019). A conflict of interests: A motivational perspective on special interests and employment success of adults with ASD. Journal of Autism and Developmental Disorders, 49(9), 3915–3923. https://doi.org/10.1007/s10803-019-04098-7 - DOI - PubMed
    1. Gonzalez, C., Martin, J. M., Minshew, N. J., & Behrmann, M. (2013). Practice makes improvement: How adults with autism out-perform others in a naturalistic visual search task. Journal of Autism and Developmental Disorders, 43(10), 2259–2268. https://doi.org/10.1007/s10803-013-1772-4 - DOI - PubMed
    1. Green, S., & Bevalier, D. (2003). Action video game modifies visual selective attention. Nature, 423(May), 534–537 - DOI
    1. Hagner, D., & Cooney, B. F. (2005). “I Do That for Everybody”: Supervising employees with autism. Focus on Autism and Other Developmental Disabilities, 20(2), 91–97. https://doi.org/10.1177/10883576050200020501 - DOI
    1. Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. https://doi.org/10.1007/s10803-005-0039-0 - DOI - PubMed
    1. Hayward, S. M., McVilly, K. R., & Stokes, M. A. (2019). Autism and employment: What works. Research in Autism Spectrum Disorders, 60, 48–58. https://doi.org/10.1016/j.rasd.2019.01.006 - DOI
    1. Hedley, D., Cai, R., Uljarevic, M., Wilmot, M., Spoor, J. R., Richdale, A., & Dissanayake, C. (2018). Transition to work: Perspectives from the autism spectrum. Autism: The International Journal of Research and Practice, 22(5), 528–541. https://doi.org/10.1177/1362361316687697 - DOI
    1. Hedley, D., Uljarevic, M., Cameron, L., Halder, S., Richdale, A., & Dissanayake, C. (2017). Employment programmes and interventions targeting adults with autism spectrum disorder: A systematic review of the literature. Autism: The International Journal of Research and Practice, 21(8), 929–941. https://doi.org/10.1177/1362361316661855 - DOI
    1. Hendricks, D. (2010). Employment and adults with autism spectrum disorders: Challenges and strategies for success. Journal of Vocational Rehabilitation, 32(2), 125–134. https://doi.org/10.3233/JVR-2010-0502 - DOI
    1. Holwerda, A., van der Klink, J. J. L., Groothoff, J. W., & Brouwer, S. (2012). Predictors for work participation in individuals with an Autism spectrum disorder: A systematic review. Journal of Occupational Rehabilitation, 22(3), 333–352. https://doi.org/10.1007/s10926-011-9347-8 - DOI - PubMed
    1. Howlin, P., Goode, S., Hutton, J., & Rutter, M. (2004). Adult outcome for children with autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45(2), 212–229 - DOI
    1. Hurlbutt, K., & Chalmers, L. (2004). Employment and adults with Asperger syndrome. Focus on Autism and Other Developmental Disabilities, 19(4), 215–222. https://doi.org/10.1177/10883576040190040301 - DOI
    1. Iarocci, G., & Armstrong, K. (2014). Age-related changes in conjunctive visual search in children with and without ASD. Autism Research, 7(2), 229–236. https://doi.org/10.1002/aur.1359 - DOI - PubMed
    1. Jolliffe, T., & Baron-Cohen, S. (1997). Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 38(5), 527–534 - DOI
    1. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science, 12(6), 1083–1096. https://doi.org/10.1111/j.1467-7687.2009.00855.x - DOI - PubMed
    1. Kaldy, Z., Giserman, I., Carter, A. S., & Blaser, E. (2016). The mechanisms underlying the ASD advantage in visual search. Journal of Autism and Developmental Disorders, 46(5), 1513–1527. https://doi.org/10.1007/s10803-013-1957-x - DOI - PubMed - PMC
    1. Kirchner, J. C., & Dziobek, I. (2014). Toward the successful employment of adults with autism: A first analysis of special interests and factors deemed important for vocational performance. Scandinavian Journal of Child and Adolescent Psychiatry and Psychology, 2(2), 77–85. https://doi.org/10.21307/sjcapp-2014-011
    1. Lindor, E., Rinehart, N., & Fielding, J. (2018). Superior visual search and crowding abilities are not characteristic of all individuals on the autism spectrum. Journal of Autism and Developmental Disorders, 48(10), 3499–3512. https://doi.org/10.1007/s10803-018-3601-2 - DOI - PubMed
    1. Luria, G., Kahana, A., Goldenberg, J., & Noam, Y. (2019). Contextual moderators for leadership potential based on trait activation theory. Journal of Organizational Behavior, 40(8), 899–911 - DOI
    1. Milne, E., Griffiths, H., Buckley, D., & Scope, A. (2009a). Vision in children and adolescents with autistic spectrum disorder: Evidence for reduced convergence. Journal of Autism and Developmental Disorders, 39(7), 965–975. https://doi.org/10.1007/s10803-009-0705-8 - DOI - PubMed
    1. Milne, E., Scope, A., Pascalis, O., Buckley, D., & Makeig, S. (2009b). Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biological Psychiatry, 65(1), 22–30. https://doi.org/10.1016/j.biopsych.2008.07.017 - DOI - PubMed
    1. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 43(2), 255–263 - DOI
    1. Mottron, L., Belleville, S., & Menard, E. (1999). Local bias in autistic subjects as evidenced by graphic tasks: Perceptual hierarchization or working memory deficit? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 40(5), 743–755 - DOI
    1. Müller, E., Schuler, A., Burton, B. A., & Yates, G. B. (2003). Meeting the vocational support needs of individuals with Asperger Syndrome and other autism spectrum disabilities. Journal of Vocational Rehabilitation, 18(3), 163–175
    1. National Center for O*NET Development. (2020). Geographic Information Systems Technicians (O*Net Report No. 15–1199.05).
    1. O’riordan, M. A. (2004). Superior visual search in adults with autism. Autism, 8(3), 229–248. https://doi.org/10.1177/1362361304045219 - DOI - PubMed
    1. O’Riordan, M. A., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology. Human Perception and Performance, 27(3), 719–730.
    1. Pei, F., Baldassi, S., Procida, G., Igliozzi, R., Tancredi, R., Muratori, F., & Cioni, G. (2009). Neural correlates of texture and contour integration in children with autism spectrum disorders. Vision Research, 49(16), 2140–2150. https://doi.org/10.1016/j.visres.2009.06.006 - DOI - PubMed
    1. Pellicano, E., Smith, A. D., Cristino, F., Hood, B. M., Briscoe, J., & Gilchrist, I. D. (2011). Children with autism are neither systematic nor optimal foragers. Proceedings of the National Academy of Sciences, 108(1), 421–426. https://doi.org/10.1073/pnas.1014076108 - DOI
    1. Raven, J., & Raven, J. (2003). Raven Progressive Matrices. In Handbook of Nonverbal Assessment (pp. 223–237).
    1. Remington, A. M., Swettenham, J. G., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121(2), 544–551. https://doi.org/10.1037/a0027670 - DOI - PubMed - PMC
    1. Remington, A., Swettenham, J., Campbell, R., & Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20(11), 1388–1393. https://doi.org/10.1111/j.1467-9280.2009.02454.x - DOI - PubMed
    1. Roux, A. M., Shattuck, P. T., Rava, J. E., Julianna, A., & Kristy, A. (2015). PA: Life course outcomes research program. Transition into Young Adulthood. Philadelphia.
    1. Scott, M., Jacob, A., Hendrie, D., Parsons, R., Girdler, S., Falkmer, T., & Falkmer, M. (2017). Employers’ perception of the costs and the benefits of hiring individuals with autism spectrum disorder in open employment in Australia. PLoS ONE, 12(5), 1–16. https://doi.org/10.1371/journal.pone.0177607 - DOI
    1. Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 34(8), 1351–1364 - DOI
    1. Shattuck, P. T., Narendorf, S. C., Cooper, B., Sterzing, P. R., Wagner, M., & Taylor, J. L. (2012). Postsecondary education and employment among youth with an autism spectrum disorder. Pediatrics, 129(6), 1042–1049. https://doi.org/10.1542/peds.2011-2864 - DOI - PubMed - PMC
    1. Shirama, A., Kato, N., & Kashino, M. (2017). When do individuals with autism spectrum disorder show superiority in visual search? Autism, 21(8), 942–951. https://doi.org/10.1177/1362361316656943 - DOI - PubMed
    1. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739. https://doi.org/10.1016/j.visres.2009.08.005 - DOI - PubMed
    1. Sterkin, A., Levy, Y., Pokroy, R., Lev, M., Levian, L., Doron, R., et al. (2018). Vision improvement in pilots with presbyopia following perceptual learning. Vision Research, 152, 61–73. https://doi.org/10.1016/j.visres.2017.09.003 - DOI - PubMed
    1. Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. (1971). A manual for the embedded figures tests. Consulting Psychologists Press.
    1. Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33–39 - DOI

05 mai 2021

Une méta-analyse du microbiote intestinal chez les enfants autistes

Aperçu: G.M.

Des études antérieures ont rapporté une dysbiose dans le microbiote intestinal (MI) d'enfants avec un diagnostic du "trouble du spectre de l'autisme" (dTSA), qui peut être un facteur déterminant sur le développement de l'enfant à travers l'axe microbiote-intestin-cerveau. Cependant, on ne sait pas s'il existe un groupe spécifique de bactéries dysbiotiques dans les TSA. 


Le but de cette étude était de réaliser une méta-analyse sur les études qui analysent le MI chez les enfants avec un dTSA. 18 études remplissaient nos critères de sélection. 

Nos résultats ont montré une plus faible abondance relative de Streptococcus (SMD + = - 0,999; IC à 95% - 1,549, - 0,449) et de genres Bifidobacterium (SMD + = - 0,513; IC à 95% - 0,953, - 0,073) chez les enfants avec un dTSA. Dans l'ensemble, les genres Bifidobacterium sont impliqués. Cependant, les différences constatées entre les études sont attribuées à des facteurs tels que le biais de déclaration.

A Meta-analysis of Gut Microbiota in Children with Autism

Affiliations

Abstract

Previous studies have reported dysbiosis in the gut microbiota (GM) of children with autism spectrum disorders (ASD), which may be a determining factor on child development through the microbiota-gut-brain axis. However, it is not clear if there is a specific group of dysbiotic bacteria in ASD. The aim of this study was to carry out a meta-analysis on the studies that analyze GM in children with ASD. 18 studies fulfilled our selection criteria. Our results showed a lower relative abundance of Streptococcus (SMD+ = - 0.999; 95% CI - 1.549, - 0.449) and Bifidobacterium genera (SMD+ = - 0.513; 95% CI - 0.953, - 0.073) in children with ASD. Overall, the Bifidobacterium genera is involved. However, differences found between studies are attributed to factors such as reporting bias.

Keywords: Autism spectrum disorders (ASD); Gut microbiota; Meta-analysis; Microbiota-gut-brain axis; Systematic review.

References

    1. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11(22), 1–13. https://doi.org/10.1186/1471-230x-11-22 . - DOI
    1. Andreo-Martínez, P., García-Martínez, N., Sánchez-Samper, E. P., & Martínez-González, A. E. (2019). An approach to gut microbiota profile in children with autism spectrum disorder. Environmental Microbiology Reports, 12(2), 115–135. https://doi.org/10.1111/1758-2229.12810 . - DOI - PubMed
    1. APA. (2013). American Psychiatric Association. Autism spectrum disorder. In Diagnostic and statistical manual of mental disorders, 5 Eds (DSM-5). American Psychiatric Publishing.
    1. Baj, J., Sitarz, E., Forma, A., Wróblewska, K., & Karakuła-Juchnowicz, H. (2020). Alterations in the nervous system and gut microbiota after β-hemolytic Streptococcus group A infection—Characteristics and diagnostic criteria of PANDAS recognition. International Journal of Molecular Sciences, 21(4), 1476. https://doi.org/10.3390/ijms21041476 . - DOI - PMC
    1. Bonnet-Brilhault, F., Rajerison, T. A., Paillet, C., Guimard-Brunault, M., Saby, A., Ponson, L., Tripi, G., Malvy, J., & Roux, S. (2018). Autism is a prenatal disorder: Evidence from late gestation brain overgrowth. Autism Research, 11(12), 1635–1642. https://doi.org/10.1002/aur.2036 . - DOI - PubMed
    1. Borenstein, M. (2019). Common mistakes in meta-analysis and how to avoid them. Englewood, NJ: Biostat Inc.
    1. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. - DOI
    1. Bridgemohan, C., Cochran, D. M., Howe, Y. J., Pawlowski, K., Zimmerman, A. W., Anderson, G. M., Choueiri, R., Sices, L., Miller, K. J., Ultmann, M., & Helt, J. (2019). Investigating potential biomarkers in autism spectrum disorder. Frontiers in Integrative Neuroscience, 13, 31. https://doi.org/10.3389/fnint.2019.00031 . - DOI - PubMed - PMC
    1. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 12 Lawrence Erlbaum Associates Inc.
    1. Cooper, H., Hedges, L. V., & Valentine, J. C. (2019). The handbook of research synthesis and meta-analysis. Russell Sage Foundation. - DOI
    1. Coretti, L., Paparo, L., Riccio, M. P., Amato, F., Cuomo, M., Natale, A., Borrelli, L., Corrado, G., De Caro, C., Comegna, M., & Buommino, E. (2018). Gut microbiota features in young children with autism spectrum disorders. Frontiers in Microbiology, 9, 3146. https://doi.org/10.3389/fmicb.2018.03146 . - DOI - PubMed - PMC
    1. Da Silva, H. D., & Winkelströter, L. K. (2019). Universal gestational screening for Streptococcus agalactiae colonization and neonatal infection—A systematic review and meta-analysis. Journal of Infection and Public Health, 12(4), 479–481. https://doi.org/10.1016/j.jiph.2019.03.004 . - DOI - PubMed
    1. Dall’Aglio, L., Muka, T., Cecil, C. A. M., Bramer, W. M., Verbiest, M., Nano, J., Hidalgo, A. C., Franco, O. H., & Tiemeier, H. (2018). The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neuroscience & Biobehavioral Reviews, 94, 17–30. https://doi.org/10.1016/j.neubiorev.2018.07.011 . - DOI
    1. De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., Cristofori, F., Guerzoni, M. E., Gobbetti, M., & Francavilla, R. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PloS One, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993 . - DOI - PubMed - PMC
    1. Diaz Heijtz, R. (2016). Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Seminars in Fetal and Neonatal Medicine, 21(6), 410–417. https://doi.org/10.1016/j.siny.2016.04.012 . - DOI - PubMed
    1. Ding, H. T., Taur, Y., & Walkup, J. T. (2017). Gut microbiota and autism: Key concepts and findings. Journal of Autism and Developmental Disorders, 47(2), 480–489. https://doi.org/10.1007/s10803-016-2960-9 . - DOI - PubMed
    1. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x . - DOI
    1. Finegold, S. M., Dowd, S. E., Gontcharova, V., Liu, C., Henley, K. E., Wolcott, R. D., Youn, E., Summanen, P. H., Granpeesheh, D., Dixon, D., & Liu, M. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16(4), 444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008 . - DOI - PubMed
    1. Finegold, S. M., Summanen, P. H., Downes, J., Corbett, K., & Komoriya, T. (2017). Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe, 45, 133–137. https://doi.org/10.1016/j.anaerobe.2017.02.008 . - DOI - PubMed
    1. Haas, K. N., & Blanchard, J. L. (2017). Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology, 67(2), 402–410. https://doi.org/10.1099/ijsem.0.001643 . - DOI - PubMed
    1. Hartung, J. (1999). An Alternative method for meta-analysis. Biometrical Journal, 41(8), 901–916. https://doi.org/10.1002/(sici)1521-4036(199912)41:8%3c901::aid-bimj901%3... . - DOI
    1. Hedges, L., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.
    1. Herd, P., Palloni, A., Rey, F., & Dowd, J. B. (2018). Social and population health science approaches to understand the human microbiome. Nature Human Behaviour, 2(11), 808–815. https://doi.org/10.1038/s41562-018-0452-y . - DOI - PubMed - PMC
    1. Heuer, L. S., Croen, L. A., Jones, K. L., Yoshida, C. K., Hansen, R. L., Yolken, R., Zerbo, O., DeLorenze, G., Kharrazi, M., Ashwood, P., & Van de Water, J. (2019). An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: The early markers for autism study. Biological Psychiatry, 86(4), 255–264. https://doi.org/10.1016/j.biopsych.2019.04.037 . - DOI - PubMed - PMC
    1. Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11(2), 193–206. https://doi.org/10.1037/1082-989x.11.2.193 . - DOI - PubMed
    1. Iglesias-Vázquez, L., van Ginkel Riba, G., Arija, V., & Canals, J. (2020). Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients, 12, 792. https://doi.org/10.3390/nu12030792 . - DOI - PMC
    1. Inoue, R., Sakaue, Y., Sawai, C., Sawai, T., Ozeki, M., Romero-Perez, G. A., & Tsukahara, T. (2016). A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Bioscience, Biotechnology, and Biochemistry, 80(12), 2450–2458. https://doi.org/10.1080/09168451.2016.1222267 . - DOI - PubMed
    1. Iovene, M. R., Bombace, F., Maresca, R., Sapone, A., Iardino, P., Picardi, A., Marotta, R., Schiraldi, C., Siniscalco, D., Serra, N., & de Magistris, L. (2017). Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders. Mycopathologia, 182(3–4), 349–363. https://doi.org/10.1007/s11046-016-0068-6 . - DOI - PubMed
    1. Jiang, H. Y., Zhang, X., Yu, Z. H., Zhang, Z., Deng, M., Zhao, J. H., & Ruan, B. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. Journal of Psychiatric Research, 104, 130–136. https://doi.org/10.1016/j.jpsychires.2018.07.007 . - DOI - PubMed
    1. Kang, D. W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., & Krajmalnik-Brown, R. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PloS One, 8(7), e68322. https://doi.org/10.1371/journal.pone.0068322 . - DOI - PubMed - PMC
    1. Kang, D.-W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., Lozupone, C. A., Hahn, J., Adams, J. B., & Krajmalnik-Brown, R. (2018). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121–131. https://doi.org/10.1016/j.anaerobe.2017.12.007 . - DOI - PubMed
    1. Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine, 22, 2693–2710. https://doi.org/10.1002/sim.1482 . - DOI - PubMed
    1. Krajmalnik-Brown, R., Lozupone, C., Kang, D.-W., & Adams, J. B. (2015). Gut bacteria in children with autism spectrum disorders: Challenges and promise of studying how a complex community influences a complex disease. Microbial Ecology in Health and Disease, 26, 26914. https://doi.org/10.3402/mehd.v26.26914 . - DOI - PubMed
    1. Kumar, H., Lund, R., Laiho, A., Lundelin, K., Ley, R. E., Isolauri, E., & Salminen, S. (2014). Gut microbiota as an epigenetic regulator: Pilot study based on whole-genome methylation analysis. MBio, 5(6), e02113–e02114. https://doi.org/10.1128/mBio.02113-14 . - DOI - PubMed - PMC
    1. Lopez-Lopez, J. A., Marin-Martinez, F., Sanchez-Meca, J., Van den Noortgate, W., & Viechtbauer, W. (2014). Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study. The British Journal of Mathematical and Statistical Psychology, 67(1), 30–48. https://doi.org/10.1111/bmsp.12002 . - DOI - PubMed
    1. Ma, B., Liang, J., Dai, M., Wang, J., Luo, J., Zhang, Z., & Jing, J. (2019). Altered gut microbiota in Chinese children with autism spectrum disorders. Frontiers in Cellular and Infection Microbiology, 9, 40–40. https://doi.org/10.3389/fcimb.2019.00040 . - DOI - PubMed - PMC
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2019). The role of gut microbiota in gastrointestinal symptoms of children with ASD. Medicina, 55(8), 408. https://doi.org/10.3390/medicina55080408 . - DOI - PMC
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2020a). Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review. Revista de Psiquiatría y Salud Mental, 13(3), 150–164. https://doi.org/10.1016/j.rpsm.2020.06.002 . - DOI - PubMed
    1. Martínez-González, A. E., & Andreo-Martínez, P. (2020b). Una propuesta de probiótico basada en el bifidobacterium para el autismo. Revista Archivos Latinoamericanos de Nutrición, 70(4).
    1. Mayer, E. A., Labus, J., Aziz, Q., Tracey, I., Kilpatrick, L., Elsenbruch, S., Schweinhardt, P., Van Oudenhove, L., & Borsook, D. (2019). Role of brain imaging in disorders of brain–gut interaction: A Rome Working Team Report. Gut, 68(9), 1701–1715. https://doi.org/10.1136/gutjnl-2019-318308%JGut . - DOI - PubMed - PMC
    1. McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133(5), 872–883. https://doi.org/10.1542/peds.2013-3995 . - DOI - PubMed
    1. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, a. t. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135 . - DOI - PubMed - PMC
    1. Moya-Pérez, A., Perez-Villalba, A., Benítez-Páez, A., Campillo, I., & Sanz, Y. (2017). Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain, Behavior, and Immunity, 65, 43–56. https://doi.org/10.1016/j.bbi.2017.05.011 . - DOI - PubMed
    1. Niu, M., Li, Q., Zhang, J., Wen, F., Dang, W., Duan, G., Li, H., Ruan, W., Yang, P., Guan, C., & Tian, H. (2019). Characterization of intestinal microbiota and probiotics treatment in children with autism spectrum disorders in China. Frontiers in Neurology, 10, 1084–1084. https://doi.org/10.3389/fneur.2019.01084 . - DOI - PubMed - PMC
    1. Oh, M., Kim, S. A., & Yoo, H. J. (2020). Higher lactate level and lactate-to-pyruvate ratio in autism spectrum disorder. Experimental Neurobiology, 29(4), 314. https://doi.org/10.5607/en20030 . - DOI - PubMed - PMC
    1. Ooi, Y. P., Weng, S. J., Kossowsky, J., Gerger, H., & Sung, M. (2017). Oxytocin and autism spectrum disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry, 50(1), 5–13. https://doi.org/10.1055/s-0042-109400 . - DOI - PubMed
    1. Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54(Pt 10), 987–991. https://doi.org/10.1099/jmm.0.46101-0 . - DOI - PubMed
    1. Plaza-Díaz, J., Gómez-Fernández, A., Chueca, N., Torre-Aguilar, M. J. D. L., Gil, Á., Perez-Navero, J. L., Flores-Rojas, K., Martín-Borreguero, P., Solis-Urra, P., Ruiz-Ojeda, F. J., & Garcia, F. (2019). Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients, 11(2), 337. https://doi.org/10.3390/nu11020337 . - DOI - PMC
    1. Rossignol, D. A., & Frye, R. E. (2012). Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Molecular Psychiatry, 17, 290. https://doi.org/10.1038/mp.2010.136 . - DOI - PubMed
    1. Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments. Willey. - DOI
    1. Rubio-Aparicio, M., López-López, J., Viechtbauer, W., Marín-Martínez, F., Botella, J., & Sanchez-Meca, J. (2019). Testing categorical moderators in mixed-effects meta-analysis in the presence of heteroscedasticity. The Journal of Experimental Education, 88, 288–310. https://doi.org/10.1080/00220973.2018.1561404 . - DOI
    1. Rücker, G., & Schumacher, M. (2008). Simpson’s paradox visualized: The example of the rosiglitazone meta-analysis. BMC Medical Research Methodology, 8(1), 1–8. - DOI
    1. Sánchez-Meca, J., & Marín-Martínez, F. (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods, 13(1), 31–48. https://doi.org/10.1037/1082-989X.13.1.31 . - DOI - PubMed
    1. Sanchez-Meca, J., Marin-Martinez, F., & Chacon-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4), 448–467. https://doi.org/10.1037/1082-989x.8.4.448 . - DOI - PubMed
    1. Shaaban, S. Y., El Gendy, Y. G., Mehanna, N. S., El-Senousy, W. M., El-Feki, H. S. A., Saad, K., & El-Asheer, O. M. (2017). The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutritional Neuroscience, 21(9), 1–6. https://doi.org/10.1080/1028415x.2017.1347746 . - DOI
    1. Sharp, W. G., Berry, R. C., McCracken, C., Nuhu, N. N., Marvel, E., Saulnier, C. A., Klin, A., Jones, W., & Jaquess, D. L. (2013). Feeding problems and nutrient intake in children with autism spectrum disorders: A meta-analysis and comprehensive review of the literature. Journal of Autism and Developmental Disorders, 43(9), 2159–2173. https://doi.org/10.1007/s10803-013-1771-5 . - DOI - PubMed
    1. Vallée, A., & Vallée, J.-N. (2018). Warburg effect hypothesis in autism Spectrum disorders. Molecular Brain, 11(1), 1. https://doi.org/10.1186/s13041-017-0343-6 . - DOI - PubMed - PMC
    1. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03 . - DOI
    1. Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411–423. https://doi.org/10.1016/j.biopsych.2016.08.024 . - DOI - PubMed
    1. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology, 77(18), 6718–6721. https://doi.org/10.1128/aem.05212-11 . - DOI - PubMed - PMC
    1. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2013). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4, 42. https://doi.org/10.1186/2040-2392-4-42 . - DOI - PubMed - PMC
    1. Wang, S., Harvey, L., Martin, R., van der Beek, E. M., Knol, J., Cryan, J. F., & Renes, I. B. (2018). Targeting the gut microbiota to influence brain development and function in early life. Neuroscience & Biobehavioral Reviews, 95, 191–201. https://doi.org/10.1016/j.neubiorev.2018.09.002 . - DOI
    1. Wells, G. A., Shea, B., O’Connell, D. A., Peterson, J., Welch, V., Losos, M., & Tugwell, P. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute. http://www3.med.unipmn.it/dispense_ebm/2009-2010/Corso%20Perfezionamento...
    1. Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Cho Paik, M., Wick, I., Bennett, A., Jabado, O., Hirschberg, D. L., & Lipkin, W. I. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PloS One, 6(9), e24585. https://doi.org/10.1371/journal.pone.0024585 . - DOI - PubMed - PMC
    1. Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3(1), e00261–00211. https://doi.org/10.1128/mBio.00261-11 . - DOI
    1. Wu, W., Kong, Q., Tian, P., Zhai, Q., Wang, G., Liu, X., Zhao, J., Zhang, H., Lee, Y. K., & Chen, W. (2020). Targeting gut microbiota dysbiosis: Potential intervention strategies for neurological disorders. Engineering. https://doi.org/10.1016/j.eng.2019.07.026 . - DOI - PubMed
    1. Xu, M., Xu, X., Li, J., & Li, F. (2019). Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Frontiers in Psychiatry, 10, 473. https://doi.org/10.3389/fpsyt.2019.00473 . - DOI - PubMed - PMC
    1. Zhang, M., Ma, W., Zhang, J., He, Y., & Wang, J. (2018). Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Scientific Reports, 8(1), 13981–13981. https://doi.org/10.1038/s41598-018-32219-2 . - DOI - PubMed - PMC