Aperçu: G.M.
Les
études fondées sur les puces à ADN sur le sang comparant les personnes avec un diagnostic de trouble du spectre de l'autisme (TSA) et des personnes au développement typique aident à caractériser les différences dans les
fonctions de cellules immunitaires circulantes et proposent un biomarqueur potentiel.
Am J Med Genet B Neuropsychiatr Genet. 2017 Apr;174(3):181-201. doi: 10.1002/ajmg.b.32511. Epub 2016 Nov 11.
Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis
Tylee DS1, Hess JL1, Quinn TP1, Barve R1, Huang H2,3, Zhang-James Y1, Chang J4, Stamova BS5, Sharp FR5, Hertz-Picciotto I6, Faraone SV1,7, Kong SW8, Glatt SJ1.
Author information
- 1
- Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe Lab), SUNY Upstate Medical University, Syracuse, New York.
- 2
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.
- 3
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
- 4
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, New York.
- 5
- Department of Neurology, UC Davis School of Medicine, Sacramento, California.
- 6
- Department of Public Health Sciences and UC Davis MIND Institute, School of Medicine, Davis, California.
- 7
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
- 8
- Department of Pediatrics, Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
Abstract
Blood-based microarray studies comparing individuals affected with autism spectrum disorder
(ASD) and typically developing individuals help characterize
differences in circulating immune cell functions and offer potential
biomarker signal. We sought to combine the subject-level data from
previously published studies by mega-analysis to increase the
statistical power. We identified studies that compared ex vivo blood or
lymphocytes from ASD-affected individuals and unrelated comparison
subjects using Affymetrix or Illumina array platforms. Raw microarray
data and clinical meta-data were obtained from seven studies, totaling
626 affected and 447 comparison subjects. Microarray data were processed
using uniform methods. Covariate-controlled mixed-effect linear models
were used to identify gene transcripts and co-expression network modules
that were significantly associated with diagnostic status.
Permutation-based gene-set analysis was used to identify functionally
related sets of genes that were over- and under-expressed among ASD
samples. Our results were consistent with diminished interferon-, EGF-,
PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased
ribosomal translation and NK-cell related activity in ASD. We explored
evidence for sex-differences in the ASD-related transcriptomic
signature. We also demonstrated that machine-learning classifiers using
blood transcriptome data perform with moderate accuracy when data are
combined across studies. Comparing our results with those from
blood-based studies of protein biomarkers (e.g., cytokines and trophic
factors), we propose that ASD may feature decoupling between certain
circulating signaling proteins (higher in ASD samples) and the
transcriptional cascades which they typically elicit within circulating
immune cells (lower in ASD samples). These findings provide insight into
ASD-related transcriptional differences in circulating immune cells. ©
2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.
- PMID: 27862943
- DOI: 10.1002/ajmg.b.32511