11 mai 2021

Association entre la puissance de l'électroencéphalographie spectrale et le risque et le diagnostic d'autisme au début du développement

Aperçu: G.M.

Le "trouble du spectre de l'autisme" (TSA) trouve son origine dans le développement atypique des réseaux cérébraux. Les nourrissons qui présentent un risque familial élevé de TSA et qui sont diagnostiqués plus tard avec un TSA présentent une activité atypique dans les mesures oscillatoires d'électroencéphalographie (EEG) multiples. Cependant, les études sur les nourrissons et les frères et sœurs sont souvent limitées par la petite taille des échantillons.
Nous avons utilisé l'International Infant EEG Data Integration Platform, un ensemble de données multi-sites avec 432 participants, dont 222 à haut risque de TSA, auprès desquels des mesures répétées d'EEG ont été collectées entre 3 et 36 mois.
Nous avons appliqué un modèle de courbe de croissance latente pour tester si le statut de risque familial prédit les trajectoires de développement de la puissance spectrale au cours des 3 premières années de la vie, et si ces trajectoires prédisent l'issue des TSA. 

Un changement de puissance spectrale EEG dans toutes les bandes de fréquences s'est produit au cours des 3 premières années de vie. Le risque familial, mais pas un diagnostic ultérieur de TSA, était associé à une puissance réduite à 3 mois et à un changement développemental plus marqué entre 3 et 36 mois dans presque toutes les bandes de puissance absolue.
Le résultat du TSA n'était pas associé à l'interception de puissance absolue ou à la pente. Aucune association n'a été trouvée entre le risque ou le résultat et le pouvoir relatif. 

Cette étude a appliqué une approche analytique non utilisée dans les études prospectives antérieures sur les biomarqueurs des TSA, qui a été modélisée pour refléter la relation temporelle entre la susceptibilité génétique, le développement du cerveau et le diagnostic des TSA.
Les trajectoires de puissance spectrale semblent être prédites par le risque familial; cependant, la puissance spectrale ne permet pas de prédire le résultat du diagnostic au-delà du statut de risque familial. Les divergences entre les résultats actuels et les études précédentes sont discutées. 

RÉSUMÉ: Les nourrissons dont un frère ou une sœur plus âgé reçoit un diagnostic de TSA courent un risque accru de développer eux-mêmes un TSA. Cet article a testé si la puissance spectrale EEG au cours de la première année de vie peut prédire si ces nourrissons ont développé ou non un TSA. 

Association between spectral electroencephalography power and autism risk and diagnosis in early development

Affiliations

Abstract

Autism spectrum disorder (ASD) has its origins in the atypical development of brain networks. Infants who are at high familial risk for, and later diagnosed with ASD, show atypical activity in multiple electroencephalography (EEG) oscillatory measures. However, infant-sibling studies are often constrained by small sample sizes. We used the International Infant EEG Data Integration Platform, a multi-site dataset with 432 participants, including 222 at high-risk for ASD, from whom repeated measurements of EEG were collected between the ages of 3-36 months. We applied a latent growth curve model to test whether familial risk status predicts developmental trajectories of spectral power across the first 3 years of life, and whether these trajectories predict ASD outcome. Change in spectral EEG power in all frequency bands occurred during the first 3 years of life. Familial risk, but not a later diagnosis of ASD, was associated with reduced power at 3 months, and a steeper developmental change between 3 and 36 months in nearly all absolute power bands. ASD outcome was not associated with absolute power intercept or slope. No associations were found between risk or outcome and relative power. This study applied an analytic approach not used in previous prospective biomarker studies of ASD, which was modeled to reflect the temporal relationship between genetic susceptibility, brain development, and ASD diagnosis. Trajectories of spectral power appear to be predicted by familial risk; however, spectral power does not predict diagnostic outcome above and beyond familial risk status. Discrepancies between current results and previous studies are discussed. LAY SUMMARY: Infants with an older sibling who is diagnosed with ASD are at increased risk of developing ASD themselves. This article tested whether EEG spectral power in the first year of life can predict whether these infants did or did not develop ASD.

Keywords: EEG; autism spectrum disorders; infants; siblings.

References

REFERENCES

    1. Bedford, R., Jones, E. J. H., Johnson, M. H., Pickles, A., Charman, T., & Gliga, T. (2016). Sex differences in the association between infant markers and later autistic traits. Molecular Autism, 7, 21. https://doi.org/10.1186/s13229-016-0081-0
    1. Benasich, A. A., Gou, Z., Choudhury, N., & Harris, K. D. (2008). Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behavioural Brain Research, 195(2), 215-222. https://doi.org/10.1016/j.bbr.2008.08.049
    1. Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 9, 18. https://doi.org/10.1186/1741-7015-9-18
    1. Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Scientific Reports, 8(1), 6828. https://doi.org/10.1038/s41598-018-24318-x
    1. Bigdely-Shamlo, N., Touryan, J., Ojeda, A., Kothe, C., Mullen, T., & Robbins, K. (2020). Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies. NeuroImage, 207, 116361. https://doi.org/10.1016/j.neuroimage.2019.116361
    1. Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810), 84-88. https://doi.org/10.1038/s41586-020-2314-9
    1. Charman, T., Loth, E., Tillmann, J., Crawley, D., Wooldridge, C., Goyard, D., Ahmad, J., Auyeung, B., Ambrosino, S., Banaschewski, T., Baron-Cohen, S., Baumeister, S., Beckmann, C., Bolte, S., Bourgeron, T., Bours, C., Brammer, M., Brandeis, D., Brogna, C., … Buitelaar, J. K. (2017). The EU-AIMS Longitudinal European Autism Project (LEAP): Clinical characterisation. Molecular Autism, 8, 27. https://doi.org/10.1186/s13229-017-0145-9
    1. Cheng, J., Edwards, L. J., Maldonado-Molina, M. M., Komro, K. A., & Muller, K. E. (2010). Real longitudinal data analysis for real people: Building a good enough mixed model. Statistics in Medicine, 29(4), 504-520. https://doi.org/10.1002/sim.3775
    1. Constantino, J. N., Zhang, Y., Frazier, T., Abbacchi, A. M., & Law, P. (2010). Sibling recurrence and the genetic epidemiology of autism. The American Journal of Psychiatry, 167(11), 1349-1356. https://doi.org/10.1176/appi.ajp.2010.09101470
    1. D'Abate, L., Walker, S., Yuen, R. K. C., Tammimies, K., Buchanan, J. A., Davies, R. W., Thiruvahindrapuram, B., Wei, J., Brian, J., Bryson, S. E., Dobkins, K., Howe, J., Landa, R., Leef, J., Messinger, D., Ozonoff, S., Smith, I. M., Stone, W. L., Warren, Z. E., … Scherer, S. W. (2019). Predictive impact of rare genomic copy number variations in siblings of individuals with autism spectrum disorders. Nature Communications, 10(1), 5519. https://doi.org/10.1038/s41467-019-13380-2
    1. Debnath, R., Buzzell, G. A., Morales, S., Bowers, M. E., Leach, S. C., & Fox, N. A. (2020). The Maryland analysis of developmental EEG (MADE) pipeline. Psychophysiology, 57(6), e13580. https://doi.org/10.1111/psyp.13580
    1. Desjardins, J. A., van Noordt, S., Huberty, S., Segalowitz, S. J., & Elsabbagh, M. (2020). EEG integrated platform lossless (EEG-IP-L) pre-processing pipeline for objective signal quality assessment incorporating data annotation and blind source separation. Journal of Neuroscience Methods, 347, 108961. https://doi.org/10.1016/j.jneumeth.2020.108961
    1. Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., … Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. https://doi.org/10.1038/mp.2013.78
    1. Dickinson, A., DiStefano, C., Lin, Y.-Y., Scheffler, A. W., Senturk, D., & Jeste, S. S. (2018). Interhemispheric alpha-band hypoconnectivity in children with autism spectrum disorder. Behavioural Brain Research, 348, 227-234. https://doi.org/10.1016/j.bbr.2018.04.026
    1. Elsabbagh, M. (2020). Linking risk factors and outcomes in autism spectrum disorder: Is there evidence for resilience? BMJ (Clinical Research Ed.), 368, l6880. https://doi.org/10.1136/bmj.l6880
    1. Elsabbagh, M., & Johnson, M. H. (2016). Autism and the social brain: The First-YearPuzzle. Biological Psychiatry, 80(2), 94-99. https://doi.org/10.1016/j.biopsych.2016.02.019
    1. Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T., Pickles, A., Baron-Cohen, S., Bolton, P., Johnson, M. H., & Team, B. A. S. I. S. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology: CB, 22(4), 338-342. https://doi.org/10.1016/j.cub.2011.12.056
    1. Ewen, J. B., Sweeney, J. A., & Potter, W. Z. (2019). Conceptual, regulatory and strategic imperatives in the early days of EEG-based biomarker validation for neurodevelopmental disabilities. Frontiers in Integrative Neuroscience, 13, 45. https://doi.org/10.3389/fnint.2019.00045
    1. Fox, N. A., & Bell, M. A. (1990). Electrophysiological indices of frontal lobe development. Relations to cognitive and affective behavior in human infants over the first year of life. Annals of the New York Academy of Sciences, 608, 677-698 discussion 698-704.
    1. Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The Harvard automated processing pipeline for electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data. Frontiers in Neuroscience, 12, 97. https://doi.org/10.3389/fnins.2018.00097
    1. Gabard-Durnam, L. J., Wilkinson, C., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nature Communications, 10(1), 4188. https://doi.org/10.1038/s41467-019-12202-9
    1. Gasser, T., Bächer, P., & Steinberg, H. (1985). Test-retest reliability of spectral parameters of the EEG. Electroencephalography and Clinical Neurophysiology, 60, 312-319.
    1. Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., … Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1), 160044. https://doi.org/10.1038/sdata.2016.44
    1. Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., Elison, J. T., Swanson, M. R., Zhu, H., Botteron, K. N., Collins, D. L., Constantino, J. N., Dager, S. R., Estes, A. M., Evans, A. C., Fonov, V. S., Gerig, G., Kostopoulos, P., McKinstry, R. C., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348-351. https://doi.org/10.1038/nature21369
    1. Islam, M. K., Rastegarnia, A., & Yang, Z. (2016). Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4), 287-305. https://doi.org/10.1016/j.neucli.2016.07.002
    1. Jamal, W., Das, S., Oprescu, I.-A., Maharatna, K., Apicella, F., & Sicca, F. (2014). Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. Journal of Neural Engineering, 11(4), 046019. https://doi.org/10.1088/1741-2560/11/4/046019
    1. Jones, E. J. H., Dawson, G., Kelly, J., Estes, A., & Webb, S. J. (2017). Parent-deliveredearly intervention in infants at risk for ASD: Effects on electrophysiological and habituation measures of social attention. Autism Research: Official Journal of the International Society for Autism Research, 10(5), 961-972. https://doi.org/10.1002/aur.1754
    1. Jones, E. J. H., Gliga, T., Bedford, R., Charman, T., & Johnson, M. H. (2014). Developmental pathways to autism: A review of prospective studies of infants at risk. Neuroscience and Biobehavioral Reviews, 39, 1-33. https://doi.org/10.1016/j.neubiorev.2013.12.001
    1. Jones, E. J. H., Venema, K., Earl, R. K., Lowy, R., & Webb, S. J. (2017). Infant social attention: An endophenotype of ASD-related traits? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 58(3), 270-281. https://doi.org/10.1111/jcpp.12650
    1. Jones, E. J. H., Venema, K., Earl, R., Lowy, R., Barnes, K., Estes, A., Dawson, G., & Webb, S. J. (2016). Reduced engagement with social stimuli in 6-month-old infants with later autism spectrum disorder: A longitudinal prospective study of infants at high familial risk. Journal of Neurodevelopmental Disorders, 8, 7. https://doi.org/10.1186/s11689-016-9139-8
    1. Jones, Emily J. H., Kaitlin Venema, Rachel Lowy, Rachel K. Earl, and Sara Jane Webb.“Developmental changes in infant brain activity during naturalistic social experiences.” Developmental Psychobiology 57, no. 7 (November 2015): 842-53. https://doi.org/10.1002/dev.21336.
    1. Leach, S. C., Morales, S., Bowers, M. E., Buzzell, G. A., Debnath, R., Beall, D., & Fox, N. A. (2020). Adjusting ADJUST: Optimizing the ADJUST algorithm for pediatric data using geodesic nets. Psychophysiology, 57(8), e13566. https://doi.org/10.1111/psyp.13566
    1. Levin, A. R., Méndez Leal, A. S., Gabard-Durnam, L. J., & O'Leary, H. M. (2018). BEAPP: The batch electroencephalography automated processing platform. Frontiers in Neuroscience, 12, 513. https://doi.org/10.3389/fnins.2018.00513
    1. Levin, A. R., Varcin, K. J., O'Leary, H. M., Tager-Flusberg, H., & Nelson, C. A. (2017). EEG power at 3 months in infants at high familial risk for autism. Journal of Neurodevelopmental Disorders, 9(1), 34. https://doi.org/10.1186/s11689-017-9214-9
    1. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205-223.
    1. Lord, C., Rutter, M., DiLavorre, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule-2nd edition (ADOS-2). Western Psychological Services.
    1. McDermott, J. E., Wang, J., Mitchell, H., Webb-Robertson, B.-J., Hafen, R., Ramey, J., & Rodland, K. D. (2013). Challenges in biomarker discovery: Combining expert insights with statistical analysis of complex omics data. Expert Opinion on Medical Diagnostics, 7(1), 37-51. https://doi.org/10.1517/17530059.2012.718329
    1. McDonald, N. M., Senturk, D., Scheffler, A., Brian, J. A., Carver, L. J., Charman, T., Chawarska, K., Curtin, S., Hertz-Piccioto, I., Jones, E. J. H., Klin, A., Landa, R., Messinger, D. S., Ozonoff, S., Stone, W. L., Tager-Flusberg, H., Webb, S. J., Young, G., Zwaigenbaum, L., & Jeste, S. S. (2019). Developmental trajectories of infants with multiplex family risk for autism: A baby siblings research consortium study. JAMA Neurology, 77(1), 73-81. https://doi.org/10.1001/jamaneurol.2019.3341
    1. Messinger, D. S., Young, G. S., Webb, S. J., Ozonoff, S., Bryson, S. E., Carter, A., Carver, L., Charman, T., Chawarska, K., Curtin, S., Dobkins, K., Hertz-Picciotto, I., Hutman, T., Iverson, J. M., Landa, R., Nelson, C. A., Stone, W. L., Tager-Flusberg, H., & Zwaigenbaum, L. (2015). Early sex differences are not autism-specific: A Baby Siblings Research Consortium (BSRC) study. Molecular Autism, 6(1). http://dx.doi.org/10.1186/s13229-015-0027-y.
    1. Mundy, P., Card, J., & Fox, N. (2000). EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36(4), 325-338.
    1. Noreika, V., Georgieva, S., Wass, S., & Leong, V. (2020). 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants. Infant Behavior and Development, 58, 101393. https://doi.org/10.1016/j.infbeh.2019.101393
    1. O'Reilly, C., Lewis, J. D., & Elsabbagh, M. (2017). Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One, 12(5), e0175870. https://doi.org/10.1371/journal.pone.0175870
    1. Orekhova, E. V., Elsabbagh, M., Jones, E. J., Dawson, G., Charman, T., & Johnson, M. H. (2014). EEG hyper-connectivity in high-risk infants is associated with later autism. Journal of Neurodevelopmental Disorders, 6(1), 40. https://doi.org/10.1186/1866-1955-6-40
    1. Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Elam, M. (2006). EEG theta rhythm in infants and preschool children. Clinical Neurophysiology, 117(5), 1047-1062. https://doi.org/10.1016/j.clinph.2005.12.027
    1. Parikshak, N. N., Luo, R., Zhang, A., Won, H., Lowe, J. K., Chandran, V., Horvath, S., & Geschwind, D. H. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155(5), 1008-1021. https://doi.org/10.1016/j.cell.2013.10.031
    1. Payakachat, N., Tilford, J. M., & Ungar, W. J. (2016). National database for autism research (NDAR): Big data opportunities for health services research and health technology assessment. PharmacoEconomics, 34(2), 127-138. https://doi.org/10.1007/s40273-015-0331-6
    1. Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., & Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6(1), 103. https://doi.org/10.1038/s41597-019-0104-8
    1. Righi, G., Tierney, A. L., Tager-Flusberg, H., & Nelson, C. A. (2014). Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PLoS One, 9(8), e105176. https://doi.org/10.1371/journal.pone.0105176
    1. Salinsky, M. C., Oken, B. S., & Morehead, L. (1991). Test-retest reliability in EEG frequency analysis. Electroencephalography and Clinical Neurophysiology, 79(5), 382-392. https://doi.org/10.1016/0013-4694(91)90203-g
    1. Robbins, K. A., Touryan, J., Mullen, T., Kothe, C., & Bigdely-Shamlo, N. (2020). How sensitive are EEG results to preprocessing methods: A benchmarking study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(5), 1081-1090. https://doi.org/10.1109/TNSRE.2020.2980223
    1. Szatmari, P., Chawarska, K., Dawson, G., Georgiades, S., Landa, R., Lord, C., Messinger, D. S., Thurm, A., & Halladay, A. (2016). Prospective longitudinal studies of infant siblings of children with autism: Lessons learned and future directions. Journal of the American Academy of Child and Adolescent Psychiatry, 55(3), 179-187. https://doi.org/10.1016/j.jaac.2015.12.014
    1. Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: An endophenotype of autism spectrum disorder. PLoS One, 7(6), e39127. https://doi.org/10.1371/journal.pone.0039127
    1. Traut, N., Beggiato, A., Bourgeron, T., Delorme, R., Rondi-Reig, L., Paradis, A. L., & Toro, R. (2018). Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biological Psychiatry, 83(7), 579-588. https://doi.org/10.1016/j.biopsych.2017.09.029
    1. van Noordt, S., Desjardin, J., Huberty, S., Abbou-Abbas, L., Webb, S., Levin, A., Segalowitz, S., Evans, A., The BASIS Team, & Elsabbagh, M. (2020). EEG-IP: An international infant EEG data integration platform for the study of risk and resilience in autism and related conditions. Molecular Medicine, 26(1), 40. https://doi.org/10.1186/s10020-020-00149-3.
    1. Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 24. https://doi.org/10.1186/1866-1955-5-24
    1. Webb, S. J., Bernier, R., Henderson, H. A., Johnson, M. H., Jones, E. J. H., Lerner, M. D., McPartland, J. C., Nelson, C. A., Rojas, D. C., Townsend, J., & Westerfield, M. (2015). Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism. Journal of Autism and Developmental Disorders, 45(2), 425-443. https://doi.org/10.1007/s10803-013-1916-6
    1. Wilkinson, C. L., Gabard-Durnam, L. J., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Use of longitudinal EEG measures in estimating language development in infants with and without familial risk for autism spectrum disorder. Neurobiology of Language, 1, 33-53.
    1. Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., Botteron, K. N., Dager, S. R., Dawson, G., Estes, A. M., Evans, A. C., Hazlett, H. C., Kostopoulos, P., McKinstry, R. C., Paterson, S. J., Schultz, R. T., Zwaigenbaum, L., & Piven, J. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. The American Journal of Psychiatry, 169(6), 589-600. https://doi.org/10.1176/appi.ajp.2011.11091447
    1. Wolff, J. J., Jacob, S., & Elison, J. T. (2018). The journey to autism: Insights from neuroimaging studies of infants and toddlers. Development and Psychopathology, 30(2), 479-495. https://doi.org/10.1017/S0954579417000980t

Relations entre le revenu du ménage et le comportement indépendant fonctionnel des enfants autistes

 Aperçu: G.M.

Les enfants des ménages à faible revenu sont moins susceptibles de recevoir un diagnostic de "trouble du spectre de l'autisme" (TSA) et le diagnostic est souvent retardé. L'absence ou le retard d'identification des TSA minimise la capacité d'un enfant à recevoir des services d'intervention précoce efficaces qui soutiennent le développement des compétences d'autonomie fonctionnelle.
La recherche n'a pas encore identifié les relations entre l'indépendance fonctionnelle et le revenu du ménage pour les enfants autistes.
Une enquête nationale transversale auprès de 231 soignants d'enfants autistes âgés de 2 à 12 ans a été menée. Les soignants ont répondu à un sondage de 90 minutes portant sur la démographie de la famille, les services d'intervention, la gravité des symptômes de l'autisme et les résultats comportementaux fonctionnels des enfants.
Des différences significatives dans les scores de comportement d'indépendance fonctionnelle ont été identifiées pour les enfants des catégories de revenu le plus élevé et le plus bas lors du contrôle de la gravité des symptômes de l'autisme, de l'âge du diagnostic et de la réception des services d'intervention. Cette étude fournit des preuves préliminaires à l'appui de l'association entre le revenu et le comportement fonctionnel indépendant des enfants autistes.

Relationships Between Household Income and Functional Independent Behavior for Children With Autism

Affiliations

Abstract

Children in lower income households are less likely to be diagnosed with autism spectrum disorder (ASD) and diagnosis is often delayed. Lack of or delayed identification of ASD minimizes a child's ability to receive effective early intervention services that support development of functional independence skills. Research has yet to identify relationships between functional independence and household income for children with ASD. A cross-sectional national survey with 231 caregivers of children with autism aged 2-12 years was conducted. Caregivers completed a 90-min survey examining family demographics, intervention services, autism symptom severity, and children's functional behavioral outcomes. Significant differences in functional independence behavior scores were identified for children from the highest and lowest income categories when controlling for autism symptom severity, age of diagnosis, and receipt of intervention services. This study provides preliminary evidence to support the association between income and functional independent behavior for children with ASD.

Keywords: activities of daily living; autism; children; functional outcomes.


Relations entre les comportements restreints et répétitifs et les aptitudes sociales chez les tout-petits autistes

 Aperçu: G.M.

 Nous avons examiné les relations entre les comportements restreints et répétitifs (CRR :  insistance sur la similitude, les comportements sensori-moteurs répétitifs, l'automutilation) avec les compétences sociales en général et les aspects qui comprennent les compétences sociales telles que mesurées par le VABS-II (capacités d'adaptation, jeu / loisirs temps, relations interpersonnelles) chez les tout-petits de 24 (n = 63) et 36 mois (n = 35), à haut risque familial et diagnostiqués TSA.
Les résultats de la régression linéaire hiérarchique ont indiqué que la répétition sensori-motrice était le meilleur prédicteur des habiletés sociales en général.
Les résultats secondaires ont indiqué que les trois sous-types de CRR étaient associés à chaque sous-domaine de compétences sociales; cependant, les effets sensori-moteurs répétitifs étaient les plus forts et les plus constants parmi ces effets.
Bien que nos résultats suggèrent une relation négative générale entre les sous-types de CRR et les aspects de la fonction sociale adaptative, les comportements sensori-moteurs répétitifs peuvent être particulièrement pertinents pour le développement des compétences sociales pendant la petite enfance.

doi: 10.1007/s10803-021-05014-8. 

Relations of Restricted and Repetitive Behaviors to Social Skills in Toddlers with Autism

Collaborators, Affiliations

Abstract

We examined the relations of restricted and repetitive behaviors (RRB; insistence on sameness, repetitive sensory-motor, self-injurious behavior) to social skills overall and aspects that comprise social skills as measured by the VABS-II (coping skills, play/leisure time, interpersonal relationships) in 24- (n = 63) and 36-month old (n = 35), high-familial-risk toddlers with ASD. Hierarchical linear regression results indicated that repetitive sensory-motor was the best predictor of social skills overall. Secondary results indicated that all three RRB subtypes were associated with each subdomain of social skills; however, repetitive sensory-motor was the strongest and most consistent among these effects. While our results suggests a general negative relation of subtypes of RRB to aspects of adaptive social function, repetitive sensory-motor behaviors may be of particular relevance to the development of social skills during toddlerhood.

Keywords: Autism; Insistence on sameness; Repetitive sensory-motor; Restricted repetitive behavior; Self-injurious behavior; Social skills.

References

    1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders. (4th ed.). American Psychiatric Publishing.
    1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. (5th ed.). American Psychiatric Publishing. - DOI
    1. Antezana, L., Factor, R. S., Condy, E. E., Strege, M. V., Scarpa, A., & Richey, J. A. (2019). Gender differences in restricted and repetitive behaviors and interests in youth with autism. Autism Research, 12(2), 274–283. https://doi.org/10.1002/aur.2049 - DOI - PubMed
    1. Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age 12. Journal of Autism and Developmental Disorders, 29, 213–224. https://doi.org/10.1023/A:1023080005650 - DOI - PubMed
    1. Bishop, S. L., Richler, J., & Lord, C. (2006). Association between restricted and repetitive behaviors and nonverbal IQ in children with autism spectrum disorders. Child Neuropsychology, 12(4–5), 247–267. https://doi.org/10.1080/09297040600630288 - DOI - PubMed
    1. Bishop, S. L., Hus, V., Duncan, A., Huerta, M., Gotham, K., Pickles, A., Kreiger, A., Buja, A., Lund, S., & Lord, C. (2013). Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43, 1287–1297. https://doi.org/10.1007/s10803-012-1671-0 - DOI - PubMed - PMC
    1. Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism & Developmental Disorders, 30(3), 237–243. https://doi.org/10.1023/A:1005596502855 - DOI
    1. Boyd, B. A., Baranek, G. T., Sideris, J., Poe, M. D., Watson, L. R., Patten, E., & Miller, H. (2010). Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Research, 3(2), 78–87. https://doi.org/10.1002/aur.124 - DOI - PubMed - PMC
    1. Bruckner, C. T., & Yoder, P. (2007). Restricted object use in young children with autism: Definition and construct validity. Autism, 11(2), 161–171. https://doi.org/10.1177/1362361307075709 - DOI - PubMed
    1. Bruyneel, E., Demurie, E., Warreyn, P., Beyers, W., Boterberg, S., Bontinck, C., Dewaele, N., & Roeyers, H. (2019). Language growth in very young siblings at risk for autism spectrum disorder. International Journal of Language and Communication Disorders, 54(6), 940–953. https://doi.org/10.1111/1460-6984.12497 - DOI - PubMed
    1. Chatham, C. H., Taylor, K. I., Charman, T., LiogierD’ardhuy, X., Eule, E., Fedele, A., Hardan, A. Y., Loth, E., Muragh, L., del Valle Rubido, M., San Jose Caceres, A., Sevigny, J., Sikich, L., Snyder, L., Tillmann, J. E., Ventola, P. E., Walton-Bowe, K. L., Wang, P. P., Willgoss, T., & Bolognani, F. (2018). Adaptive behavior in autism: Minimal clinically important differences on the Vineland-II. Autism Research, 11(2), 270–283. https://doi.org/10.1002/aur.1874 - DOI - PubMed
    1. Charman, T., Taylor, E., Drew, A., Cockerill, H., Brown, J. A., & Baird, G. (2005). Outcome at 7 years of children diagnosed with autism at age 2: Predictive validity of assessments conducted at 2 and 3 years of age and pattern of symptom change over time. Journal of Child Psychology and Psychiatry, 46(5), 500–513. https://doi.org/10.1111/j.1469-7610.2004.00377.x - DOI - PubMed
    1. Cox, A., Klein, K., Charman, T., Baird, G., Baron-Cohen, S., Swettenham, J., Drew, A., & Wheelwright, S. (1999). Autism spectrum disorders at 20 and 42 months of age: Stability of clinical and ADI-R diagnosis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(5), 719–732. https://doi.org/10.1111/1469-7610.00488 - DOI
    1. Donnellan, A. M., Anderson, J. L., & Mesaros, R. A. (1984). An observational study of stereotypic behavior and proximity related to the occurrence of autistic child-family member interactions. Journal of Autism and Developmental Disorders, 14(2), 205–210. https://doi.org/10.1007/BF02409663 - DOI - PubMed
    1. Dupuis, A., Moon, M. J., Brian, J., Georgiades, S., Levy, T., Anagnostou, E., Nicholson, R., Schachar, R., & Crosbie, J. (2020). Concurrent validity of the ABAS-II questionnaire with the Vineland II interview for adaptive behavior in a pediatric ASD sample: High correspondence despite systematically lower scores. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-020-04597-y - DOI
    1. Elison, J. T., Wolff, J. J., Reznick, J. S., Botteron, K. N., Estes, A. M., Gu, H., Hazlett, H. C., Meadows, A. J., Paterson, S. J., Zwaigenbaum, L., Piven, J., & Network, T. I. B. I. S. (2014). Repetitive behavior in 12-month-olds later classified with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(11), 1216–1224. https://doi.org/10.1016/j.jaac.2014.08.004 - DOI - PubMed - PMC
    1. Gabriels, R. L., Agnew, J. A., Miller, L. J., Gralla, J., Pan, Z., Goldson, E., Ledbetter, J. C., Dinkins, J. P., & Hooks, E. (2008). Is there a relationship between restricted, repetitive, stereotyped behaviors and interests and abnormal sensory response in children with autism spectrum disorders? Research in Autism Spectrum Disorders, 2(4), 660–670. https://doi.org/10.1016/j.rasd.2008.02.002 - DOI
    1. Guthrie, W., Swineford, L. B., Nottke, C., & Wetherby, A. M. (2013). Early diagnosis of autism spectrum disorder: Stability and change in clinical diagnosis and symptom presentation: Stability of early diagnosis and symptoms in ASD. Journal of Child Psychology and Psychiatry, 54(5), 582–590. https://doi.org/10.1111/jcpp.12008 - DOI - PubMed
    1. Harrop, C., McConachie, H., Emsley, R., Leadbitter, K., & Green, J. (2014). Restricted and repetitive behaviors in autism spectrum disorders and typical development: Cross-sectional and longitudinal comparisons. Journal of Autism and Developmental Disorders, 44(5), 1207–1219. https://doi.org/10.1007/s10803-013-1986-5 - DOI - PubMed
    1. Hiruma, L., Pretzel, R. E., Tapia, A. L., Bodfish, J. W., Bradley, C., Wiggins, L., Hsu, M., Lee, L., Levy, S. E., & Daniels, J. (2021). A distinct three-factor structure of restricted and repetitive behaviors in an epidemiologically sound sample of preschool-age children with autism spectrum disorder. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-020-04776-x - DOI - PubMed
    1. Honey, E., Leekam, S., Turner, M., & McConachie, H. (2007). Repetitive behaviour and play in typically developing children and children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37, 1107–1115. https://doi.org/10.1007/s10803-006-0253-4 - DOI - PubMed
    1. Kim, S. H., & Lord, C. (2010). Restricted and repetitive behaviors in toddlers and preschoolers with autism spectrum disorders based on the Autism Diagnostic Observation Schedule (ADOS). Autism Research, 3, 162–173. https://doi.org/10.1002/aur.142 - DOI - PubMed - PMC
    1. Knutsen, J., Crossman, M., Perrin, J., Shui, A., & Kuhlthau, K. (2019). Sex differences in restricted repetitive behaviors and interests in children with autism spectrum disorder: An Autism Treatment Network study. Autism, 23(4), 858–868. https://doi.org/10.1177/1362361318786490 - DOI - PubMed
    1. Lam, K. S. L., & Aman, M. G. (2007). The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866. https://doi.org/10.1007/s10803-006-0213-z - DOI - PubMed
    1. Lampi, A., Fitzpatrick, P., Romero, V., Amaral, J., & Schmidt, R. C. (2018). Understanding the influence of social and motor context on the co-occurring frequency of restricted and repetitive behaviors in autism. Journal of Autism and Developmental Disorders, 50, 1479–1496. https://doi.org/10.1007/s10803-018-3698-3 - DOI
    1. Larkin, F., Meins, E., Centifanti, L. C. M., Fernyhough, C., & Leekam, S. R. (2017). How does restricted and repetitive behavior relate to language and cognition in typical development? Development and Psychopathology, 29(3), 863–874. https://doi.org/10.1017/S0954579416000535 - DOI - PubMed
    1. Lee, S. H., & Odom, S. L. (1996). The relationship between stereotypic behavior and peer social interaction for children with severe disabilities. Journal of the Association for Persons with Severe Handicaps, 21(2), 88–95. https://doi.org/10.1177/154079699602100204 - DOI
    1. Lee, S. H., Odom, S. L., & Loftin, R. (2007). Social engagement with peers and stereotypic behavior of children with autism. Journal of Positive Behavior Interventions, 9(2), 67–79. https://doi.org/10.1177/10983007070090020401 - DOI
    1. Leekam, S. R., Prior, M. R., & Uljarevic, M. (2011). Restricted and repetitive behaviors in autism spectrum disorders: A review of research in the last decade. Psychological Bulletin, 137(4), 562–593. https://doi.org/10.1037/a0023341 - DOI - PubMed
    1. Lord, C., & Hopkins, J. M. (1986). The social behavior of autistic children with younger and same-age nonhandicapped peers. Journal of Autism and Developmental Disorders, 16(3), 249–262. https://doi.org/10.1007/BF01531658 - DOI - PubMed
    1. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. https://doi.org/10.1007/BF02172145 - DOI
    1. Lord, C., Bishop, S., & Anderson, D. (2015). Developmental trajectories as autism phenotypes. American Journal of Medical Genetics Part C, 169, 198–208 - DOI
    1. Manor-Binyamini, I., & Schreiber-Divon, M. (2019). Repetitive behaviors: Listening to the voice of people with high-functioning autism spectrum disorder. Research in Autism Spectrum Disorders, 64, 23–30. https://doi.org/10.1016/j.rasd.2019.04.001 - DOI
    1. McDermott, C. R., Farmer, C., Gotham, K. O., & Bal, V. H. (2020). Measurement of subcategories of repetitive behaviors in autistic adolescents and adults. Autism in Adulthood, 2(1), 48–60. https://doi.org/10.1089/aut.2019.0056 - DOI - PubMed
    1. Militerni, R., Bravaccio, C., Falco, C., Fico, C., & Palermo, M. T. (2002). Repetitive behaviors in autistic disorder. European Child and Adolescent Psychiatry, 11, 210–218. https://doi.org/10.1007/s00787-002-0279-x - DOI - PubMed
    1. Mirenda, P., Smith, I. M., Vaillancourt, T., Georgiades, S., Duku, E., Szatmari, P., Bryson, S., Fombonne, E., Roberts, W., Volden, J., Waddell, C., Zwaigenbaum, L., & The Pathways in ASD Study Team. (2010). Validating the repetitive behavior scale-revised in young children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 40, 1521–1530. https://doi.org/10.1007/s10803-010-1012-0 - DOI - PubMed
    1. Morgan, L., Wetherby, A. M., & Barber, A. (2008). Repetitive and stereotyped movements in children with autism spectrum disorders late in the second year of life. Journal of Child Psychology and Psychiatry, 49(8), 826–837. https://doi.org/10.1111/j.1469-7610.2008.01904.x - DOI - PubMed
    1. Mullen, E. M. (1995). Mullen scales of early learning. AGS Publishing.
    1. Oakes, A., Thurman, A. J., Mcduffie, A., Bullard, L. M., Hagerman, R. J., & Abbeduto, L. (2016). Characterising repetitive behaviours in young boys with fragile X syndrome. Journal of Intellectual Disability Research, 60(1), 54–67. https://doi.org/10.1111/jir.12234 - DOI - PubMed
    1. Ozonoff, S., Macari, S., Young, G. S., Goldring, S., Thompson, M., & Rogers, S. J. (2008). Atypical object exploration at 12 months of age is associated with autism in a prospective sample. Autism, 12(5), 457–472. https://doi.org/10.1177/1362361308096402 - DOI - PubMed - PMC
    1. Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., Rogers, S. J., Rozga, A., Sangha, S., Sigman, M., Steinfeld, M. B., & Young, G. S. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 256-266.e2. https://doi.org/10.1016/j.jaac.2009.11.009 - DOI - PubMed - PMC
    1. Purpura, G., Constanzo, V., Chericoni, N., Puopolo, M., Scattoni, M. L., Muratori, F., & Apicella, F. (2017). Bilateral patterns of repetitive movements in 6- to 12-month old infants with autism spectrum disorders. Frontiers in Psychology, 8, 1168 - DOI
    1. R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved October 25, 2019, from https://www.R-project.org/ .
    1. Ray-Subramanian, C. E., & Ellis Weismer, S. (2012). Receptive and expressive language as predictors of restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 42, 2113–2120. https://doi.org/10.1007/s10803-012-1463-6 - DOI - PubMed - PMC
    1. Richler, J., Bishop, S. L., Kleinke, J. R., & Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 73–85. https://doi.org/10.1007/s10803-006-0332-6 - DOI - PubMed
    1. Richler, J., Huerta, M., Bishop, S. L., & Lord, C. (2010). Developmental trajectories of restricted and repetitive behaviors and interests in children with autism spectrum disorders. Development and Psychopathology, 22(1), 55–69. https://doi.org/10.1017/s0954579409990265 - DOI - PubMed - PMC
    1. Rogers, S. J., Hepburn, S., & Wehner, E. (2003). Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. Journal of Autism and Developmental Disorders, 33(6), 631–642. https://doi.org/10.1023/B:JADD.0000006000.38991.a7 - DOI - PubMed
    1. Sacrey, L. R., Bryson, S., Zwaigenbaum, L., Brian, J., Smith, I. M., Roberts, W., Szatmari, P., Vaillancourt, T., Roncadin, C., & Garon, N. (2018). The Autism Parent Screen for Infants: Predicting risk of autism spectrum disorder based on parent-reported behavior observed at 6–24 months of age. Autism, 22(3), 322–334. https://doi.org/10.1177/1362361316675120 - DOI - PubMed
    1. Sacrey, L. A. R., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M., Raza, S., Roberts, W., Szatmari, P., Vaillancourt, T., Roncadin, C., & Garon, N. (2019). Developmental trajectories of adaptive behavior in autism spectrum disorder: A high-risk sibling cohort. Journal of Child Psychology and Psychiatry and Allied Disciplines, 60(6), 697–706. https://doi.org/10.1111/jcpp.12985 - DOI
    1. Scahill, L., Aman, M. G., Lecavalier, L., Halladay, A. K., Bishop, S. L., Bodfish, J. W., Grondhuis, S., Jones, N., Horrigan, J. P., Cook, E. H., Handen, B. L., King, B. H., Pearson, D. A., McCracken, J. T., Sullivan, K. A., & Dawson, G. (2015). Measuring repetitive behaviors as a treatment endpoint in youth with autism spectrum disorder. Autism, 19(1), 38–52. https://doi.org/10.1177/1362361313510069 - DOI - PubMed
    1. Schertz, H. H., Odom, S. L., Baggett, K. M., & Sideris, J. H. (2016). Parent-reported repetitive behavior in toddlers on the autism spectrum. Journal of Autism and Developmental Disorders, 46(10), 3308–3316. https://doi.org/10.1007/s10803-016-2870-x - DOI - PubMed
    1. Sparrow, S., Balla, D., & Cicchetti, D. (2005). Vineland adapativebehavior scales. (2nd ed.). AGS Publishing.
    1. Stronach, S., & Wetherby, A. M. (2014). Examining restricted and repetitive behaviors in young children with autism spectrum disorder during two observational contexts. Autism, 18(2), 127–136. https://doi.org/10.1177/1362361312463616 - DOI - PubMed
    1. Thorup, E., Nyström, P., Gredebäck, G., Bölte, S., & Falck-Ytter, T. (2018). Reduced alternating gaze during social interaction in infancy is associated with elevated symptoms of autism in toddlerhood. Journal of Abnormal Child Psychology, 46(7), 1547–1561. https://doi.org/10.1007/s10802-017-0388-0 - DOI - PubMed - PMC
    1. Tomaszewski, B., Hepburn, S., Blakeley-Smith, A., & Rogers, S. J. (2020). Developmental trajectories of adaptive behavior from toddlerhood to middle childhood in autism spectrum disorder. American Journal on Intellectual and Developmental Disabilities, 125, 155–169 - DOI
    1. Troyb, E., Knoch, K., Herlihy, L., Stevens, M. C., Chen, C., Barton, M., Treadwell, K., & Fein, D. (2016). Restricted and repetitive behaviors as predictors of outcome in autism spectrum disorders. Journal of Autism and Developmental Disorders, 46(4), 1282–1296. https://doi.org/10.1007/s10803-015-2668-2 - DOI - PubMed - PMC
    1. Uljarević, M., Arnott, B., Carrington, S. J., Meins, E., Fernyhough, C., McConachie, H., Le Couteur, A., & Leekam, S. R. (2017). Development of restricted and repetitive behaviors from 15 to 77 months: Stability of two distinct subtypes? Developmental Psychology, 53(10), 1859–1868. https://doi.org/10.1037/dev0000324 - DOI - PubMed
    1. Watt, N., Wetherby, A. M., Barber, A., & Morgan, L. (2008). Repetitive and stereotyped behaviors in children with autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders, 38, 1518–1533. https://doi.org/10.1007/s10803-007-0532-8 - DOI - PubMed - PMC
    1. Wetherby, A. M., Woods, J., Allen, L., Cleary, J., Dickinson, H., & Lord, C. (2004). Early indicators of autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders, 34(5), 473–493. https://doi.org/10.1007/s10803-004-2544-y - DOI - PubMed
    1. Wolff, J. J., Botteron, K. N., Dager, S. R., Elison, J. T., Estes, A. M., Gu, H., Hazlett, H. C., Pandey, J., Paterson, S. J., Schultz, R. T., Zwaigenbaum, L., Piven, J., & IBIS Network. (2014). Longitudinal patterns of repetitive behavior in toddlers with autism. Journal of Child Psychology and Psychiatry, 55(8), 945–953. https://doi.org/10.1111/jcpp.12207 - DOI - PubMed
    1. Wolff, J. J., Dimian, A. F., Botteron, K. N., Dager, S. R., Elison, J. T., Estes, A. M., Hazlett, H. C., Schultz, R. T., Zwaigenbaum, L., Piven, J., & the IBIS Network. (2019). A longitudinal study of parent-reported sensory responsiveness in toddlers at-risk for autism. Journal of Child Psychology and Psychiatry, 60(3), 314–324. https://doi.org/10.1111/jcpp.12978 - DOI - PubMed
    1. Zwaigenbaum, L. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2–3), 143–152. https://doi.org/10.1016/j.ijdevneu.2004.05.001 - DOI - PubMe


09 mai 2021

Attention visuelle aux cibles repérées sur les écrans de communication augmentative simulée assistée et alternative pour les personnes avec des troubles intellectuels et de développement

 Aperçu: G.M.

Objectif
De nombreux systèmes de communication augmentative et alternative assistée (CAA) nécessitent l'utilisation d'un écran externe qui est représenté via une modalité visuelle. Il est essentiel d'évaluer et de comprendre le traitement visuel-perceptif chez les personnes handicapées qui pourraient bénéficier de la CAA. Une façon d'évaluer la façon dont les individus traitent les matériaux visuels consiste à utiliser des technologies automatisées de suivi oculaire basées sur la recherche qui obtiennent un flux de données à granularité fine concernant les orientations du regard lors de l'attention visuelle. 

Méthode
L'étude actuelle a examiné la façon dont les personnes avec un diagnostic de "trouble du spectre de l'autisme" (n = 13), du syndrome de Down (n = 13), d'une déficience intellectuelle et développementale (n = 9) ou d'un développement typique (n = 20) ont répondu à une touche de navigation de la taille d'une vignette dans un affichage CCA complexe, comprenant un affichage de la scène visuelle principale (SVP) et une barre de navigation de quatre
SVP de la taille d'une vignette. Les stimuli ont été présentés sur un moniteur contenant une technologie de recherche automatisée de suivi oculaire qui enregistrait des modèles d'attention visuelle. 

Résultats
Les participants de tous les groupes ont passé plus de temps à fixer une image de navigation
SVP miniature cible après la présentation du signal vocal pour regarder la cible, par rapport à avant la présentation du signal vocal; ils ont également passé plus de temps à regarder le SVP miniature cible que les autres SVP de taille miniature dans la barre de navigation après le signal. 

Discussion
Les participants ont pu localiser les
SVP miniatures cibles, même dans le contexte d'un affichage CAA  visuellement complexe. Les implications pour la conception des écrans CAA et pour l'évaluation de la compréhension sont discutées.

Journal of Speech, Language, and Hearing Research Research Article5 May 2021

Visual Attention to Cued Targets in Simulated Aided Augmentative and Alternative Communication Displays for Individuals With Intellectual and Developmental Disabilities

 

Purpose

Many aided augmentative and alternative communication (AAC) systems require the use of an external display that is represented via a visual modality. It is critical to evaluate and understand visual–perceptual processing in individuals with disabilities who could benefit from AAC. One way to evaluate how individuals process visual materials is through research-based automated eye-tracking technologies that obtain a fine-grained stream of data concerning gaze paths of visual attention.

Method

The current study examined how individuals with autism spectrum disorder (n = 13), Down syndrome (n = 13), intellectual and developmental disabilities (n = 9), or typical development (n = 20) responded to a spoken prompt to find a thumbnail-sized navigation key within a complex AAC display, including a main visual scene display (VSD) and a navigation bar of four thumbnail-sized VSDs. Stimuli were presented on a monitor containing automated eye-tracking research technology that recorded patterns of visual attention.

Results

Participants across groups spent more time fixating on a target thumbnail VSD navigation image after the presentation of the spoken cue to look at the target, compared to before the presentation of the spoken cue; they also spent more time looking at the target thumbnail VSD than the other thumbnail-sized VSDs in the navigation bar after the cue.

Discussion

Participants were able to locate the target thumbnail VSDs, even within the context of a visually complex AAC display. Implications for the design of AAC displays and for assessment of comprehension are discussed.