Traduction partielle : G.M.
Comput Methods Programs Biomed. 2017 Apr;142:73-79. doi: 10.1016/j.cmpb.2017.02.002. Epub 2017 Feb 20.
Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study
Grossi E1, Olivieri C2, Buscema M3.
Author information
- 1
- Autism Research Unit, Villa Santa Maria Institute, Italy, Via IV Novembre 22038 Tavernerio (CO). Electronic address: enzo.grossi@bracco.com.
- 2
- Autism Research Unit, Villa Santa Maria Institute, Italy, Via IV Novembre 22038 Tavernerio (CO). Electronic address: chiara.olivieri.co@gmail.com.
- 3
- Semeion Research Centre of Sciences of Communication, Via Sersale 117, Rome, 00128, Italy. Electronic address: m.buscema@semeion.it
Abstract
BACKGROUND:
(MS-ROM / I-FAST) est un nouveau système complexe basé sur les réseaux neuronaux artificiels (ANNs) capable d'extraire des caractéristiques d'intérêt dans l'EEG informatisé par l'analyse de quelques minutes de leur EEG sans prétraitement préliminaire. Une étude de preuve de concept publiée précédemment a montré des valeurs de précision allant de 94% à 98% chez des sujets concernés ayant une déficience cognitive légère et / ou une maladie d'Alzheimer chez des personnes âgées en bonne santé. La présence de schémas déviants dans les enregistrements simples de l'EEG de l'autisme, en cohérence avec l'organisation atypique du cortex cérébral, nous a incités à appliquer ces puissants systèmes analytiques à la recherche d'une signature EEG du troubleMulti-Scale Ranked Organizing Map coupled with Implicit Function as Squashing Time algorithm(MS-ROM/I-FAST) is a new, complex system based on Artificial Neural networks (ANNs) able to extract features of interest in computerized EEG through the analysis of few minutes of their EEG without any preliminary pre-processing. A proof of concept study previously published showed accuracy values ranging from 94%-98% in discerning subjects with Mild Cognitive Impairment and/or Alzheimer's Disease from healthy elderly people. The presence of deviant patterns in simple resting state EEG recordings in autism, consistent with the atypical organization of the cerebral cortex present, prompted us in applying this potent analytical systems in search of a EEG signature of the disease.
AIM OF THE STUDY:
The aim of the study is to assess how effectively this methodology distinguishes subjects with autism from typically developing ones.METHODS:
Fifteen definite ASD subjects (13 males; 2 females; age range 7-14; mean value = 10.4) and ten typically developing subjects (4 males; 6 females; age range 7-12; mean value 9.2) were included in the study. Patients received Autism diagnoses according to DSM-V criteria, subsequently confirmed by the ADOS scale. A segment of artefact-free EEG lasting 60 seconds was used to compute input values for subsequent analyses. MS-ROM/I-FAST coupled with a well-documented evolutionary system able to select predictive features (TWIST) created an invariant features vector input of EEG on which supervised machine learning systems acted as blind classifiers.RESULTS:
La capacité prédictive globale du système d'apprentissage automatique pour trier les cas autistes du groupe contrôle sans autisme s'est élevée de façon constante à 100% avec tous les types de systèmes utilisés en utilisant le protocole d'essai et à 84% - 92,8% en utilisant le protocole Leave One Out. Les similitudes entre les matrices de poids ANN mesurées avec des algorithmes approchés n'ont pas été affectées par l'âge des sujets. Cela suggère que les ANN ne lisent pas les modèles d'EEG liés à l'âge, mais plutôt des caractéristiques invariantes liées à la signature de déconnexion sous-jacente du cerveau.The overall predictive capability of machine learning system in sorting out autistic cases from normal control amounted consistently to 100% with all kind of systems employed using training-testing protocol and to 84% - 92.8% using Leave One Out protocol. The similarities among the ANN weight matrixes measured with apposite algorithms were not affected by the age of the subjects. This suggests that the ANNs do not read age-related EEG patterns, but rather invariant features related to the brain's underlying disconnection signature.
CONCLUSION:
This pilot study seems to open up new avenues for the development of non-invasive diagnostic testing for the early detection of ASD.
Copyright © 2017 Elsevier B.V. All rights reserved.
- PMID: 28325448
- DOI: 10.1016/j.cmpb.2017.02.002