31 octobre 2022

Stimulation du nerf vague comme traitement de la peur et de l'anxiété chez les personnes avec un diagnostic de troubles du spectre de l'autisme

Aperçu: G.M.

Les troubles anxieux touchent un grand pourcentage de personnes avec un diagnostic de trouble du spectre de l'autisme (dTSA). Chez les enfants avec un dTSA, une anxiété excessive est également liée à des problèmes gastro-intestinaux, à des comportements d'automutilation et à des symptômes dépressifs. Les thérapies cognitivo-comportementales basées sur l'exposition sont des traitements efficaces pour les troubles anxieux chez les enfants avec un dTSA, mais des taux de rechute élevés indiquent la nécessité de stratégies de traitement supplémentaires. 

Cette perspective discute des preuves issues de la recherche préclinique, qui indiquent que la stimulation du nerf vague (SNV) associée à l'exposition à des stimuli et à des situations provoquant la peur pourrait offrir des avantages en tant que traitement adjuvant des troubles anxieux qui coexistent avec les TSA. 

La stimulation du nerf vague est approuvée pour une utilisation dans le traitement de l'épilepsie, de la dépression et, plus récemment, comme adjuvant dans l'entraînement de réadaptation après un AVC. 

Dans les modèles précliniques, la SNV semble prometteuse pour améliorer simultanément la consolidation des souvenirs d'extinction et réduire l'anxiété. Dans cette revue, nous présenterons les mécanismes potentiels par lesquels la SNV pourrait traiter la peur et l'anxiété dans les TSA. 

Nous discutons également des utilisations potentielles de la SNV pour traiter la dépression et l'épilepsie dans le contexte des TSA, et des méthodes non invasives pour stimuler le nerf vague.

 

Cliquer ICI pour accéder à l'intégralité de l'article en anglais

. 2022;7(4):e220007.
doi: 10.20900/jpbs.20220007. Epub 2022 Sep 23.

Vagus Nerve Stimulation as a Treatment for Fear and Anxiety in Individuals with Autism Spectrum Disorder

Affiliations

Abstract

Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.

Keywords: behavioral therapy; exposure therapy; neurodevelopmental disorders; neuromodulation; rehabilitation.

Conflict of interest statement

CONFLICTS OF INTEREST CT Engineer is married to an employee of MicroTransponder, Inc. CK McIntyre is an author of a patent entitled “Methods for Enhancing Exposure Therapy using Vagus Nerve Stimulation”.

References

    1. Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities MMWR Surveill Summ. 2016. Apr 1;65(3):1–23.
    1. Hyman SL, Levy SE, Myers SM, Kuo DZ, Apkon CS, Davidson LF, et al. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics. 2020;145(1):e20193447. - PubMed
    1. Hessl D, Libero L, Schneider A, Kerns C, Winder-Patel B, Heath B, et al. Fear Potentiated Startle in Children With Autism Spectrum Disorder: Association With Anxiety Symptoms and Amygdala Volume. Autism Res. 2021;14(3):450–63. - PMC - PubMed
    1. White SW, Oswald D, Ollendick T, Scahill L. Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev. 2009;29(3):216–29. - PMC - PubMed
    1. Vasa RA, Mazurek MO, Mahajan R, Bennett AE, Bernal MP, Nozzolillo AA, et al. Assessment and treatment of anxiety in youth with Autism spectrum disorders. Pediatrics. 2016;137:S115–23. - PubMed
    1. van Steensel FJA, Bögels SM, Perrin S. Anxiety Disorders in Children and Adolescents with Autistic Spectrum Disorders: A Meta-Analysis. Clin Child Fam Psychol Rev. 2011;14(3):302–17. - PMC - PubMed
    1. Postorino V, Kerns CM, Vivanti G, Bradshaw J, Siracusano M, Mazzone L. Anxiety Disorders and Obsessive-Compulsive Disorder in Individuals with Autism Spectrum Disorder. Curr Psychiatry Rep. 2017;19(12):92. - PMC - PubMed
    1. Haruvi-Lamdan N, Horesh D, Golan O. PTSD and autism spectrum disorder: Co-morbidity, gaps in research, and potential shared mechanisms. Psychol Trauma. 2018;10(3):290–9. - PubMed
    1. Wood JJ, Kendall PC, Wood KS, Kerns CM, Seltzer M, Small BJ, et al. Cognitive Behavioral Treatments for Anxiety in Children with Autism Spectrum Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2020;77(5):473–84.
    1. Wood JJ, Ehrenreich-May J, Alessandri M, Fujii C, Renno P, Laugeson E, et al. Cognitive Behavioral Therapy for Early Adolescents With Autism Spectrum Disorders and Clinical Anxiety: A Randomized, Controlled Trial. Behav Ther. 2015;46(1):7–19. - PMC - PubMed
    1. Powers MB, Smits JAJ, Otto MW, Sanders C, Emmelkamp PMG. Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomized placebo controlled trial of yohimbine augmentation. J Anxiety Disord. 2009. Apr;23(3):350–6. - PubMed
    1. Ressler KJ. Translating across circuits and genetics toward progress in fear- And anxiety-related disorders. Am J Psychiatry. 2020. Mar 1;177(3):214–22. - PMC - PubMed
    1. Higa-McMillan CK, Francis SE, Rith-Najarian L, Chorpita BF. Evidence Base Update: 50 Years of Research on Treatment for Child and Adolescent Anxiety. J Clin Child Adolesc Psychol. 2016;45(2):91–113. - PubMed
    1. Rauch SAM, Eftekhari A, Ruzek JI. Review of exposure therapy: A gold standard for PTSD treatment. J Rehabil Res Dev. 2012;49(5):679–88. - PubMed
    1. Watson DR, Garfinkel SN, van Praag CG, Willmott D, Wong K, Meeten F, et al. Computerized Exposure Therapy for Spider Phobia: Effects of Cardiac Timing and Interoceptive Ability on Subjective and Behavioral Outcomes. Psychosom Med. 2019;81(1):90–9. - PubMed
    1. Raeder F, Merz CJ, Margraf J, Zlomuzica A. The association between fear extinction, the ability to accomplish exposure and exposure therapy outcome in specific phobia. Sci Rep. 2020. Dec 1;10(1):4288. - PMC - PubMed
    1. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72. - PMC - PubMed
    1. Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11(5):485–94. - PubMed
    1. Maskey M, Rodgers J, Grahame V, Glod M, Honey E, Kinnear J, et al. A Randomised Controlled Feasibility Trial of Immersive Virtual Reality Treatment with Cognitive Behaviour Therapy for Specific Phobias in Young People with Autism Spectrum Disorder. J Autism Dev Disord. 2019;49(5):1912–27. - PMC - PubMed
    1. Church BA, Rice CL, Dovgopoly A, Lopata CJ, Thomeer ML, Nelson A, et al. Learning, plasticity, and atypical generalization in children with autism. Psychon Bull Rev. 2015;22(5):1342–8. - PubMed
    1. Tsuchiyagaito A, Hirano Y, Asano K, Oshima F, Nagaoka S, Takebayashi Y, et al. Cognitive-behavioral therapy for obsessive-compulsive disorder with and without autism spectrum disorder: Gray matter differences associated with poor outcome. Front Psychiatry. 2017;8(AUG):1–12. - PMC - PubMed
    1. Keefer A, Kreiser NL, Singh V, Blakeley-Smith A, Duncan A, Johnson C, et al. Intolerance of Uncertainty Predicts Anxiety Outcomes Following CBT in Youth with ASD. J Autism Dev Disord. 2017;47(12):3949–58. - PubMed
    1. Noble LJ, Chuah A, Callahan KK, Souza RR, McIntyre CK. Peripheral effects of vagus nerve stimulation on anxiety and extinction of conditioned fear in rats. Learn Mem. 2019;26(7):245–51. - PMC - PubMed
    1. George MS, Ward HE, Ninan PT, Pollack M, Nahas Z, Anderson B, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul. 2008;1(2):112–21. - PubMed
    1. Shah AP, Carreno FR, Wu H, Chung YA, Frazer A. Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: Comparison with desipramine. Neuroscience. 2016;322:273–86. - PMC - PubMed
    1. Mathew E, Tabet MN, Robertson NM, Hays SA, Rennaker RL, Kilgard MP, et al. Vagus nerve stimulation produces immediate dose-dependent anxiolytic effect in rats. J Affect Disord. 2020;265(May 2019):552–7. - PubMed
    1. Clark K, Krahl S, Smith D, Jensen R. Post-training Unilateral Vagal Stimulation Enhances Retention Performance in the Rat. Neurobiol Learn Mem. 1995;63:213–6. - PubMed
    1. Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA. Posttraining Electrical Stimulation of Vagal Afferents with Concomitant Vagal Efferent Inactivation Enhances Memory Storage Processes in the Rat. Neurobiol Learn Mem. 1998;70:364–73. - PubMed
    1. Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, et al. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem. 2021. Oct 1;184.
    1. Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry. 2013;73(11):1071–7. - PMC - PubMed
    1. Noble LJ, Gonzalez IJ, Meruva VB, Callahan KA, Belfort BD, Ramanathan KR, et al. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl Psychiatry. 2017;7(8):e1217. - PMC - PubMed
    1. Souza RR, Robertson NM, Pruitt DT, Gonzales PA, Hays SA, Rennaker RL, et al. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress. 2019;22(4):509–20. - PubMed
    1. Souza RR, Oleksiak CR, Tabet MN, Rennaker RL, Hays SA, Kilgard MP, et al. Vagus nerve stimulation promotes extinction generalization across sensory modalities. Neurobiol Learn Mem. 2021. May 1;181:107425. - PubMed
    1. Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019;12(1):9–18. - PMC - PubMed
    1. Groves DA, Brown VJ. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500. - PubMed
    1. Dawson J, Liu CY, Los Amigos R, Francisco GE, Cramer SC, Wolf SL, et al. Vagus Nerve Stimulation Paired with Rehabilitation for Upper Limb Motor Function 1 After Ischaemic Stroke (VNS-REHAB): A Randomised. Lancet. 2021;397(10824):1545–53. - PMC - PubMed
    1. Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord. 2017;9(1):1–8. - PMC - PubMed
    1. Wechsler TF, Mühlberger A, Kümpers F. Inferiority or even superiority of virtual reality exposure therapy in phobias?—A systematic review and quantitative meta-analysis on randomized controlled trials specifically comparing the efficacy of virtual reality exposure to gold standard in vivo exposure in Agoraphobia, Specific Phobia and Social Phobia. Front Psychol. 2019. Sep 10;10:1758. - PMC - PubMed
    1. Flygare O, Andersson E, Ringberg H, Hellstadius AC, Edbacken J, Enander J, et al. Adapted cognitive behavior therapy for obsessive-compulsive disorder with co-occurring autism spectrum disorder: A clinical effectiveness study. Autism. 2020. Jan 1;24(1):190–9. - PubMed
    1. Cooper AA, Kline AC, Graham B, Bedard-Gilligan M, Mello PG, Feeny NC, et al. Homework “Dose,” Type, and Helpfulness as Predictors of Clinical Outcomes in Prolonged Exposure for PTSD. Behav Ther. 2017;48:182–94. - PubMed
    1. Maples-Keller JL, Yasinski C, Manjin N, Rothbaum BO. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics. 2017;14(3):554–63. - PMC - PubMed
    1. Reger GM, Smolenski D, Edwards-Stewart A, Skopp NA, Rizzo A, Norr A. Does Virtual Reality Increase Simulator Sickness during Exposure Therapy for Post-Traumatic Stress Disorder? Telemed E Health. 2019;25(9):859–61.
    1. Cunningham CJ, Martínez JL. The Wandering Nerve: Positional Variations of the Cervical Vagus Nerve and Neurosurgical Implications. World Neurosurg. 2021;156:105–10. - PubMed
    1. Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia. 2017;58:85–90.
    1. Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2(1):94–8. - PubMed
    1. Butler AG, O’Callaghan EL, Allen AM, McDougall SJ. Use of a physiological reflex to standardize vagal nerve stimulation intensity improves data reproducibility in a memory extinction assay. Brain Stimul. 2021. Mar 1;14(2):450–9. - PubMed
    1. Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I. Single prolonged stress disrupts retention of extinguished fear in rats. Learn Mem. 2012;19(2):43–9. - PMC - PubMed
    1. Souza RR, Robertson NM, Mathew E, Tabet MN, Bucksot JE, Pruitt DT, et al. Efficient parameters of vagus nerve stimulation to enhance extinction learning in an extinction-resistant rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99(July 2019):109848. - PubMed
    1. Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Sharma P, et al. Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Intensity. Brain Stimul. 2016;9(1):117–23. - PMC - PubMed
    1. Morrison RA, Hulsey DR, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimul. 2019. Mar 1;12(2):256–62. - PMC - PubMed
    1. Buell EP, Loerwald KW, Engineer CT, Borland MS, Buell JM, Kelly CA, et al. Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul. 2018. Nov 1;11(6):1218–24. - PMC - PubMed
    1. Hassert DL, Miyashita T, Williams CL. The Effects of Peripheral Vagal Nerve Stimulation at a Memory-Modulating Intensity on Norepinephrine Output in the Basolateral Amygdala. Behav Neurosci. 2004. Feb;118(1):79–88. - PubMed
    1. Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007. Nov 7;1179(1):28–34. - PubMed
    1. Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 2006. Nov 13;1119(1):124–32. - PMC - PubMed
    1. Furini CRG, Behling JAK, Zinn CG, Zanini ML, Assis Brasil E, Pereira LD, et al. Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behav Brain Res. 2017. May 30;326:303–6. - PubMed
    1. McIntyre CK, Hatfield T, McGaugh JL. Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur J Neurosci. 2002;16(7):1223–6. - PubMed
    1. Howells FM, Stein DJ, Russell VA. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab Brain Dis. 2012;27(3):267–74. - PubMed
    1. Hulsey DR, Riley JR, Loerwald KW, Rennaker RL, Kilgard MP, Hays SA. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol. 2017. Mar 1;289:21–30. - PMC - PubMed
    1. PeñA DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the Amygdala. Front Behav Neurosci. 2014;8(September):1–8. - PMC - PubMed
    1. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011. Feb 3;470(7332):101–6. - PMC - PubMed
    1. Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, et al. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol. 2019;122:659–71. - PMC - PubMed
    1. Stanton P, Sarvey JM. Blockade of Norepinephrine-Induced Long-Lasting Potentiation in the Hippocampal Dentate Gyrus by an Inhibitor of Protein Synthesis. Brain Res. 1985;361(1–2):276–83. - PubMed
    1. Neuman RS, Harley CW. Long-lasting potentiation of the dentate gyrus population spike by norepinephrine. Brain Res. 1983;273(1):162–5. - PubMed
    1. Salgado H, Köhr G, Trevĩo M. Noradrenergic tone determines dichotomous control of cortical spike-timing-dependent plasticity. Sci Rep. 2012;2:417. - PMC - PubMed
    1. Lemon N, Aydin-Abidin S, Funke K, Manahan-Vaughan D. Locus coeruleus activation facilitates memory encoding and induces hippocampal LTD that depends on β-Adrenergic receptor activation. Cerebral Cortex. 2009. Dec;19(12):2827–37. - PMC - PubMed
    1. Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cerebral Cortex. 2016. Apr 1;26(4):1349–64. - PMC - PubMed
    1. O’dell TJ, Connor SA, Guglietta R, Nguyen P v. b-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem. 2015;22(9):461–71. - PMC - PubMed
    1. Pudovkina OL, Cremers TIFH, Westerink BHC. The interaction between the locus coeruleus and dorsal raphe nucleus studied with dual-probe microdialysis. Eur J Pharmacol. 2002;445(1–2):37–42. - PubMed
    1. Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Seth A, Biomedical T, et al. Norepinephrine and seretonin are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol. 2019;320:112975. - PMC - PubMed
    1. Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry. 2011;70(10):937–45. - PubMed
    1. Stewart A, Huang J, Fisher RA. RGS proteins in heart: Brakes on the vagus. Front Physiol. 2012;3:95. - PMC - PubMed
    1. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81–102. - PMC - PubMed
    1. Celen C, Chuang JC, Luo X, Nijem N, Walker AK, Chen F, et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. Elife. 2017;6:e25730. - PMC - PubMed
    1. Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism. 2019;10(1):15. - PMC - PubMed
    1. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits. Cell Rep. 2017. Apr 11;19(2):335–50. - PMC - PubMed
    1. Olmos-Serrano JL, Corbin JG. Amygdala regulation of fear and emotionality in fragile X syndrome. Dev Neurosci. 2011;33(5):365–78. - PMC - PubMed
    1. Varcin KJ, Alvares GA, Uljarević M, Whitehouse AJO. Prenatal maternal stress events and phenotypic outcomes in Autism Spectrum Disorder. Autism Res. 2017;10(11):1866–77. - PubMed
    1. Ratnaseelan AM, Tsilioni I, Theoharides TC. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin Ther. 2018;40(6):903–17. - PubMed
    1. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. Original articles A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet. 2000;37:489–97. - PMC - PubMed
    1. Rasalam AD; Hailey H; Williams JHG; Moore S et al. Characteristics of fetal anticonvulsant syndrome-associated autistic disorder. Dev Med Child Neurol. 2005;130(2):556.
    1. Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-ΚB pathway dependent of HDAC3. J Neuroinflammation. 2018;15(1):1–14. - PMC - PubMed
    1. Gifford JJ, Norton SA, Kusnecov AW, Wagner GC. Valproic acid induces nuclear factor erythroid 2-related factor 2 expression in fetal and neonatal brains but not in adult brain: Evidence of the gamma-aminobutyric acid-shift hypothesis. Neuroreport. 2020;433–6. - PubMed
    1. Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, et al. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol. 2018;17(10):926–46.
    1. Markram K, Rinaldi T, la Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology. 2008;33(4):901–12. - PubMed
    1. Banerjee A, Engineer CT, Sauls BL, Morales AA, Kilgard MP, Ploski JE. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front Behav Neurosci. 2014;8(November):1–13. - PMC - PubMed
    1. Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A developmental study of abnormal behaviors and altered GABAergic signaling in the VPA-treated rat model of autism. Front Behav Neurosci. 2018;12(August):1–15. - PMC - PubMed
    1. Pacheva I, Ivanov I, Yordanova R, Gaberova K, Galabova F, Panova M, et al. Epilepsy in Children with Autistic Spectrum Disorder. Children. 2019;6(2):15.
    1. Besag FMC. Epilepsy in patients with autism: Links, risks and treatment challenges. Neuropsychiatr Dis Treat. 2018;14:1–10. - PMC - PubMed
    1. Galli R, Bonanni E, Pizzanelli C, Maestri M, Lutzemberger L, Giorgi FS, et al. Daytime vigilance and quality of life in epileptic patients treated with vagus nerve stimulation. Epilepsy Behav. 2003;4(2):185–91. - PubMed
    1. Hallböök T, Lundgren J, Köhler S, Blennow G, Strömblad LG, Rosén I. Beneficial effects on sleep of vagus nerve stimulation in children with therapy resistant epilepsy. Eur J Paediatric Neurol. 2005;9(6):399–407.
    1. Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: Results from the vagus nerve stimulation therapy patient outcome registry. J Neurosurg Pediatr. 2010;5(6):595–602. - PubMed
    1. Manning KE, McAllister CJ, Ring HA, Finer N, Kelly CL, Sylvester KP, et al. Novel insights into maladaptive behaviours in Prader-Willi syndrome: Serendipitous findings from an open trial of vagus nerve stimulation. J Intellect Disabil Res. 2016;60(2):149–55. - PMC - PubMed
    1. Park YD. The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism. Epilepsy Behav. 2003;4(3):286–90. - PubMed
    1. Hull MM, Madhavan D, Zaroff CM. Autistic spectrum disorder, epilepsy, and vagus nerve stimulation. Child Nerv Syst. 2015;31(8):1377–85.
    1. van Hoorn A, Carpenter T, Oak K, Laugharne R, Ring H, Shankar R. Neuromodulation of autism spectrum disorders using vagal nerve stimulation. J Clin Neurosci. 2019;63:8–12. - PubMed
    1. Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res. 2013;207:275–99. - PMC - PubMed
    1. Chandrasekhar T, Sikich L. Challenges in the diagnosis and treatment of depression in autism spectrum disorders across the lifespan. Dialogues Clin Neurosci. 2015;17(2):219–27. - PMC - PubMed
    1. Turygin NC, Matson JL, MacMillan K, Konst M. The Relationship Between Challenging Behavior and Symptoms of Depression in Intellectually Disabled Adults with and without Autism Spectrum Disorders. J Dev Phys Disabil. 2013. Aug;25(4):475–84.
    1. Fiksdal A, Hanlin L, Kuras Y, Gianferante D, Chen X, Thoma MV, et al. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology. 2019. Apr 1;102:44–52. - PMC - PubMed
    1. O’Keane V, Dinan TG, Scott L, Corcoran C. Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry. 2005;58(12):963–8. - PubMed
    1. Chen X, Liang H, Hu K, Sun Q, Sun B, Bian L, et al. Vagus nerve stimulation suppresses corticotropin-releasing factor-induced adrenocorticotropic hormone release in rats. Neuroreport. 2021;792–6. - PubMed
    1. Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, et al. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: Comparison of response, remission, and suicidality. Am J Psychiatry. 2017. Jul 1;174(7):640–8. - PubMed
    1. Childs JE, Alvarez-Dieppa AC, McIntyre CK, Kroener S. Vagus nerve stimulation as a tool to induce plasticity in pathways relevant for extinction learning. J Vis Exp. 2015;2015(102):1–12.
    1. Sivaji V, Grasse DW, Hays SA, Bucksot JE, Saini R, Kilgard MP, et al. ReStore: A wireless peripheral nerve stimulation system. J Neurosci Methods. 2019. May 15;320:26–36. - PMC - PubMed
    1. Rong PJ, Fang JL, Wang LP, Meng H, Liu J, Ma YG, et al. Transcutaneous vagus nerve stimulation for the treatment of depression: A study protocol for a double blinded randomized clinical trial. BMC Complement Altern Med. 2012;12:255. - PMC - PubMed
    1. Jin Y, Kong J. Transcutaneous vagus nerve stimulation: A promising method for treatment of autism spectrum disorders. Front Neurosci. 2017;10(JAN):1–7.
    1. Liu J, Fang J, Wang Z, Rong P, Hong Y, Fan Y, et al. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J Affect Disord. 2016;205:319–26. - PubMed
    1. Genheimer H, Andreatta M, Asan E, Pauli P. Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci Rep. 2017;7(1):1–13. - PMC - PubMed
    1. Burger AM, van Diest I, van der Does W, Korbee JN, Waziri N, Brosschot JF, et al. The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol Learn Mem. 2019. May 1;161:192–201. - PubMed
    1. Ben-Menachem E Vagus Nerve Stimulation, Side Effects, and Long-Term Safety. J Clin Neurophysiol. 2001;18(5):415–8. - PubMed


01 juin 2022

RENFORCEMENT MUSCULAIRE : 1 heure par semaine suffit à réduire de 20 % le risque de décès

Résumé :

Les exercices de renforcement musculaire doivent faire partie d’un programme d’exercice complet, bénéfique à la santé, ainsi, cette forme d'exercice ne doit pas être oubliée. 

C’est le rappel de cette méta-analyse des preuves disponibles dans la littérature, publiée dans le British Journal of Sports Medicine : 30 à 60 minutes d'activité de renforcement musculaire hebdomadaire s’avèrent liées à un risque de décès inférieur de 10 à 20 %, toutes causes confondues. 

Le principe donc, pour de meilleurs bénéfices : combiner les exercices de force à l'activité aérobie.

 

Extrait :

L'étude impliquant près de 4.000 participants, âgés de 18 à 97 ans, montre que :

  • les exercices de renforcement musculaire sont associés à une réduction du risque de décès de 10 à 17 % ;
  • à un risque également réduit de décès par maladie cardiaque et accident vasculaire cérébral, cancer, diabète et cancer du poumon ;
  • aucune association n’est identifiée entre le renforcement musculaire et un risque réduit de types spécifiques de cancer, notamment ceux de l'intestin, des reins, de la vessie ou du pancréas ;
  • l’association est en courbe en forme de J avec une réduction maximale du risque de 10 à 20 % avec environ 30 à 60 minutes/semaine d'activités de renforcement musculaire pour les décès toutes causes confondues, les maladies cardiovasculaires et tous les cancers ;
  • l’association est en forme de L cependant pour le diabète, avec une réduction importante du risque jusqu'à 60 minutes/semaine d'activités de renforcement musculaire, après quoi la diminution du bénéfice est progressive ;
  • la réduction du risque de décès toutes causes confondues, de maladies cardiovasculaires et de cancer est encore plus élevée lorsque les 2 types d'activités, renforcement musculaire et aérobie, sont combinées.

 

Lien vers l'article de SantéLog en français

Lien vers l'article complet du British Journal of Sports Medecine

10 avril 2022

Anhédonie et hyperhédonie dans l'autisme et les troubles neurodéveloppementaux associés

Aperçu: G.M.

Bien que le "trouble du spectre de l'autisme" (TSA) soit défini par une communication sociale altérée et des comportements et intérêts restreints et répétitifs, le TSA se caractérise également par des processus motivationnels altérés. La « théorie de la motivation sociale de l'autisme » décrit comment les perturbations de la motivation sociale dans les TSA dans la petite enfance peuvent entraver la volonté de s'engager dans des comportements sociaux réciproques et finalement interférer avec le développement de réseaux de neurones essentiels à la communication sociale (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Il est important de noter que les études cliniques et la recherche préclinique utilisant des organismes modèles pour les TSA indiquent que les troubles de la motivation dans les TSA ne sont pas limités aux récompenses sociales, mais sont également évidents en réponse à une gamme de récompenses non sociales. De plus, des études translationnelles sur certains troubles neurodéveloppementaux génétiquement définis associés aux TSA indiquent que ces formes syndromiques de TSA sont également caractérisées par des déficits motivationnels et des troubles dopaminergiques mésolimbiques. 

Dans ce chapitre, nous résumons les recherches cliniques et précliniques pertinentes pour les troubles du traitement des récompenses dans les TSA et les troubles neurodéveloppementaux connexes. Nous proposons également une nosologie pour décrire les troubles du traitement des récompenses dans ces troubles qui utilise un modèle à trois axes.
Dans cette nosologie triaxiale, le premier axe définit la direction de la réponse de récompense (c'est-à-dire anhédonique, hyperhédonique); le deuxième axe définit la construction du processus de récompense (par exemple, aimer la récompense, vouloir la récompense); et le troisième axe définit le contexte de la réponse de récompense (par exemple, social, non social).
Une nosologie plus précise pour décrire les troubles du traitement des récompenses dans les TSA et les troubles neurodéveloppementaux connexes facilitera la traduction de la recherche préclinique en investigations cliniques qui contribueront finalement à accélérer le développement d'interventions ciblant les systèmes de motivation pour les TSA et les troubles neurodéveloppementaux connexes.

. 2022 Apr 10.
doi: 10.1007/7854_2022

Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders

Affiliations

Abstract

Although autism spectrum disorder (ASD) is defined by impaired social communication and restricted and repetitive behaviors and interests, ASD is also characterized by impaired motivational processes. The "social motivation theory of autism" describes how social motivation disruptions in ASD in early childhood may impede the drive to engage in reciprocal social behaviors and ultimately interfere with the development of neural networks critical for social communication (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly, clinical studies and preclinical research using model organisms for ASD indicate that motivational impairments in ASD are not constrained to social rewards but are evident in response to a range of nonsocial rewards as well. Additionally, translational studies on certain genetically defined neurodevelopmental disorders associated with ASD indicate that these syndromic forms of ASD are also characterized by motivational deficits and mesolimbic dopamine impairments. In this chapter we summarize clinical and preclinical research relevant to reward processing impairments in ASD and related neurodevelopmental disorders. We also propose a nosology to describe reward processing impairments in these disorders that uses a three-axes model. In this triaxial nosology, the first axis defines the direction of the reward response (i.e., anhedonic, hyperhedonic); the second axis defines the construct of the reward process (e.g., reward liking, reward wanting); and the third axis defines the context of the reward response (e.g., social, nonsocial). A more precise nosology for describing reward processing impairments in ASD and related neurodevelopmental disorders will aid in the translation of preclinical research to clinical investigations which will ultimately help to speed up the development of interventions that target motivational systems for ASD and related neurodevelopmental disorders.

Keywords: Autism; Dopamine; Preclinical; Reward; Social motivation.

References

    1. Alugubelly N, Mohammed AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL (2019) Adolescent rat social play: Amygdalar proteomic and transcriptomic data. Data Brief 27:104589
    1. American Psychiatric Association (2013) Desk reference to the diagnostic criteria from DSM-5. American Psychiatric Publishing, Washington
    1. APA (2013) Diagnostic and statistical manual of mental disorders: DSM-V, 5th edn. American Psychiatric Association, Washington
    1. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD (2017) The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 22:666–679
    1. Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430
    1. Atzil S, Touroutoglou A, Rudy T, Salcedo S, Feldman R, Hooker JM, Dickerson BC, Catana C, Barrett LF (2017) Dopamine in the medial amygdala network mediates human bonding. Proc Natl Acad Sci U S A 114:2361–2366
    1. Auerbach RP, Pagliaccio D, Pizzagalli DA (2019) Toward an improved understanding of anhedonia. JAMA Psychiatry 76:571–573
    1. Bale TL, Abel T, Akil H, Carlezon WA Jr, Moghaddam B, Nestler EJ, Ressler KJ, Thompson SM (2019) The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology 44:1349–1353
    1. Bariselli S, Tzanoulinou S, Glangetas C, Prevost-Solie C, Pucci L, Viguie J, Bezzi P, O'Connor EC, Georges F, Luscher C, Bellone C (2016) SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci 19:926–934
    1. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9:65–73
    1. Berry Kravis E, Lewin F, Wuu J, Leehey M, Hagerman R, Hagerman P, Goetz CG (2003) Tremor and ataxia in fragile X premutation carriers: blinded videotape study. Ann Neurol 53:616–623
    1. Bishop SL, Farmer C, Bal V, Robinson EB, Willsey AJ, Werling DM, Havdahl KA, Sanders SJ, Thurm A (2017) Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am J Psychiatry 174:576–585
    1. Bittel DC, Butler MG (2005) Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7:1–20
    1. Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, Bolliger MF, Sudhof TC, Powell CM (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115–2129
    1. Bortolato M, Godar SC, Alzghoul L, Zhang J, Darling RD, Simpson KL, Bini V, Chen K, Wellman CL, Lin RC, Shih JC (2013) Monoamine oxidase A and A/B knockout mice display autistic-like features. Int J Neuropsychopharmacol 16:869–888
    1. Bottini S (2018) Social reward processing in individuals with autism spectrum disorder: a systematic review of the social motivation hypothesis. Res Autism Spectr Disord 45:9–26
    1. Bozarth MA (1990) Drug addiction as a psychobiological process. In: Warburto DM (ed) Addiction controversies. Harwood Academic Publishers, London, pp 112–134
    1. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, Kajiwara Y, Yang M, Katz AM, Scattoni ML, Harris MJ, Saxena R, Silverman JL, Crawley JN, Zhou Q, Hof PR, Buxbaum JD (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15
    1. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, DiCicco-Bloom E, Crawley JN (2012) Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7:e40914
    1. Brodkin ES (2008) Social behavior phenotypes in fragile X syndrome, autism, and the Fmr1 knockout mouse: theoretical comment on McNaughton et al. (2008). Behav Neurosci 122:483–489
    1. Campbell LE, Daly E, Toal F, Stevens A, Azuma R, Catani M, Ng V, van Amelsvoort T, Chitnis X, Cutter W, Murphy DG, Murphy KC (2006) Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study. Brain 129:1218–1228
    1. Carlezon WA Jr, Kim W, Missig G, Finger BC, Landino SM, Alexander AJ, Mokler EL, Robbins JO, Li Y, Bolshakov VY, McDougle CJ, Kim KS (2019) Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci Rep 9:16928
    1. Carter RM, Jung H, Reaven J, Blakeley-Smith A, Dichter GS (2020) A nexus model of restricted interests in autism spectrum disorder. Front Hum Neurosci 14:212
    1. Ceravolo R, Antonini A, Volterrani D, Rossi C, Goldwurm S, Di Maria E, Kiferle L, Bonuccelli U, Murri L (2005) Dopamine transporter imaging study in parkinsonism occurring in fragile X premutation carriers. Neurology 65:1971–1973
    1. Chevallier C, Grezes J, Molesworth C, Berthoz S, Happe F (2012a) Brief report: selective social anhedonia in high functioning autism. J Autism Dev Disord 42:1504–1509
    1. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT (2012b) The social motivation theory of autism. Trends Cogn Sci 16:231–239
    1. Clements CC, Zoltowski AR, Yankowitz LD, Yerys BE, Schultz RT, Herrington JD (2018) Evaluation of the social motivation hypothesis of autism: a systematic review and meta-analysis. JAMA Psychiatry 75:797–808
    1. Crawford DC, Acuna JM, Sherman SL (2001) FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med 3:359–371
    1. Dalton KM, Holsen L, Abbeduto L, Davidson RJ (2008) Brain function and gaze fixation during facial-emotion processing in fragile X and autism. Autism Res 1:231–239
    1. Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 27:403–424
    1. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345–361
    1. Del Pino I, Rico B, Marin O (2018) Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Curr Opin Neurobiol 48:174–182
    1. DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207–220
    1. Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22:229–237
    1. DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, Hashemi P, Herborg F, Rickhag M, Chen H, Gether U, Wallace MT, Galli A (2019) Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest 129:3407–3419
    1. Dichter GS, Damiano CA, Allen JA (2012) Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 4:19
    1. Dolen G (2015) Autism: oxytocin, serotonin, and social reward. Soc Neurosci 10:450–465
    1. Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184
    1. Du L, Zhao G, Duan Z, Li F (2017) Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Res 253:28–32
    1. Dufour-Rainfray D, Vourc'h P, Le Guisquet AM, Garreau L, Ternant D, Bodard S, Jaumain E, Gulhan Z, Belzung C, Andres CR, Chalon S, Guilloteau D (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59
    1. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM (1997) Low medial prefrontal dopaminergic activity in autistic children. Lancet 350:638
    1. Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–777
    1. Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106:17998–18003
    1. Fallgatter AJ, Lesch KP (2007) 22q11.2 deletion syndrome as a natural model for COMT haploinsufficiency-related dopaminergic dysfunction in ADHD. Int J Neuropsychopharmacol 10:295–299
    1. Fiksinski AM, Schneider M, Zinkstok J, Baribeau D, Chawner S, Vorstman JAS (2021) Neurodevelopmental trajectories and psychiatric morbidity: lessons learned from the 22q11.2 deletion syndrome. Curr Psychiatry Rep 23:13
    1. Franchini M, Armstrong VL, Schaer M, Smith IM (2019) Initiation of joint attention and related visual attention processes in infants with autism spectrum disorder: literature review. Child Neuropsychol 25:287–317
    1. Gadow KD, Devincent CJ, Olvet DM, Pisarevskaya V, Hatchwell E (2010a) Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur J Neurosci 32:1058–1065
    1. Gadow KD, DeVincent CJ, Pisarevskaya V, Olvet DM, Xu W, Mendell NR, Finch SJ, Hatchwell E (2010b) Parent-child DRD4 genotype as a potential biomarker for oppositional, anxiety, and repetitive behaviors in children with autism spectrum disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1208–1214
    1. Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14:1109–1120
    1. Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner MG, Kinard JL, Stuber GD, Chandrasekhar T, Politte LC, Sikich L, Dichter GS (2018) The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J Neurodev Disord 10:12
    1. Greene RK, Walsh E, Mosner MG, Dichter GS (2019) A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder. Biol Psychol 142:1–12
    1. Gunaydin LA, Deisseroth K (2014) Dopaminergic dynamics contributing to social behavior. Cold Spring Harb Symp Quant Biol 79:221–227
    1. Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA (2016) Tuberous sclerosis complex. Nat Rev Dis Primers 2:16035
    1. Hervas A (2016) One autism, several autisms. Phenotypical variability in autism spectrum disorders. Rev Neurol 62 Suppl 1:S9–S14
    1. Higashida H, Munesue T, Kosaka H, Yamasue H, Yokoyama S, Kikuchi M (2019) Social interaction improved by oxytocin in the subclass of autism with comorbid intellectual disabilities. Diseases 7:24
    1. Holsen L, Thompson T (2004) Compulsive behavior and eye blink in Prader-Willi syndrome: neurochemical implications. Am J Ment Retard 109:197–207
    1. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, Lewis EM, Luo L, Deisseroth K, Dolen G, Malenka RC (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–1411
    1. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751
    1. Johnson KP, Zarrinnegar P (2021) Autism spectrum disorder and sleep. Child Adolesc Psychiatr Clin N Am 30:195–208
    1. Johnson SA, Yechiam E, Murphy RR, Queller S, Stout JC (2006) Motivational processes and autonomic responsivity in Asperger’s disorder: evidence from the Iowa Gambling Task. J Int Neuropsychol Soc 12:668–676
    1. Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 33:335–344
    1. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN (2016) Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr Top Behav Neurosci 28:1–52
    1. Keifer CM, Day TC, Hauschild KM, Lerner MD (2021) Social and nonsocial reward anticipation in typical development and autism spectrum disorders: current status and future directions. Curr Psychiatry Rep 23:32
    1. Kenkel WM, Yee JR, Moore K, Madularu D, Kulkarni P, Gamber K, Nedelman M, Ferris CF (2016) Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl Psychiatry 6:e763
    1. Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 59:809–816
    1. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009) Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 459:257–261
    1. Kosillo P, Doig NM, Ahmed KM, Agopyan-Miu A, Wong CD, Conyers L, Threlfell S, Magill PJ, Bateup HS (2019) Tsc1-mTORC1 signaling controls striatal dopamine release and cognitive flexibility. Nat Commun 10:5426
    1. Kubota M, Fujino J, Tei S, Takahata K, Matsuoka K, Tagai K, Sano Y, Yamamoto Y, Shimada H, Takado Y, Seki C, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Zhang MR, Suhara T, Nakamura M, Takahashi H, Kato N, Higuchi M (2020) Binding of dopamine D1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: a PET study. Cereb Cortex 30(12):6458–6468
    1. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–388
    1. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910
    1. Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374:1627–1638
    1. Lightbody AA, Reiss AL (2009) Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. Dev Disabil Res Rev 15:343–352
    1. Loas G, Krystkowiak P, Godefroy O (2012) Anhedonia in Parkinson’s disease: an overview. J Neuropsychiatry Clin Neurosci 24:444–451
    1. Luck C, Vitaterna MH, Wevrick R (2016) Dopamine pathway imbalance in mice lacking Magel2, a Prader-Willi syndrome candidate gene. Behav Neurosci 130:448–459
    1. Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY (2015) Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 24:285–300
    1. Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V (2016) Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology 41(9):2215–2223
    1. Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H (2008) Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33:901–912
    1. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, Zackai EH, Emanuel BS, Vermeesch JR, Morrow BE, Scambler PJ, Bassett AS (2015) 22q11.2 deletion syndrome. Nat Rev Dis Primers 1:15071
    1. Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, Hillman RE, Farmer JE (2005) Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Med Genet A 135:171–180
    1. Miller JL, James GA, Goldstone AP, Couch JA, He G, Driscoll DJ, Liu Y (2007) Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. J Neurol Neurosurg Psychiatry 78:615–619
    1. Missig G, Robbins JO, Mokler EL, McCullough KM, Bilbo SD, McDougle CJ, Carlezon WA Jr (2020) Sex-dependent neurobiological features of prenatal immune activation via TLR7. Mol Psychiatry 25:2330–2341
    1. Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet 17:2486–2495
    1. Morales I, Berridge KC (2020) ‘Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. Physiol Behav 227:113152
    1. Mosner MG, Kinard JL, McWeeny S, Shah JS, Markiewitz ND, Damiano-Goodwin CR, Burchinal MR, Rutherford HJV, Greene RK, Treadway MT, Dichter GS (2017) Vicarious effort-based decision-making in autism spectrum disorders. J Autism Dev Disord 47:2992–3006
    1. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314
    1. Nakasato A, Nakatani Y, Seki Y, Tsujino N, Umino M, Arita H (2008) Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism. Brain Res 1193:128–135
    1. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246
    1. Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52:576–579
    1. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245
    1. Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76:981–987
    1. Ousley O, Rockers K, Dell ML, Coleman K, Cubells JF (2007) A review of neurocognitive and behavioral profiles associated with 22q11 deletion syndrome: implications for clinical evaluation and treatment. Curr Psychiatry Rep 9:148–158
    1. Ousley O, Evans AN, Fernandez-Carriba S, Smearman EL, Rockers K, Morrier MJ, Evans DW, Coleman K, Cubells J (2017) Examining the overlap between autism spectrum disorder and 22q11.2 deletion syndrome. Int J Mol Sci 18:1071
    1. Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, Rogers SJ, Rozga A, Sangha S, Sigman M, Steinfeld MB, Young GS (2010) A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry 49:256–266.e1–2
    1. Page DT, Kuti OJ, Prestia C, Sur M (2009) Haploinsufficiency for Pten and serotonin transporter cooperatively influences brain size and social behavior. Proc Natl Acad Sci U S A 106:1989–1994
    1. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS, Summers JE, Hinman KE, Motonaga KS, Phillips JM, Carson DS, Garner JP, Hardan AY (2017) Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 114:8119–8124
    1. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442
    1. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246
    1. Phillips BU, Lopez-Cruz L, Saksida LM, Bussey TJ (2019) Translational tests involving non-reward: methodological considerations. Psychopharmacology 236:449–461
    1. Piantadosi PT, Halladay LR, Radke AK, Holmes A (2021) Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 157(5):1547–1571
    1. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z, Vorstman JA, Thompson A, Regan R, Pilorge M, Pellecchia G, Pagnamenta AT, Oliveira B, Marshall CR, Magalhaes TR, Lowe JK, Howe JL, Griswold AJ, Gilbert J, Duketis E, Dombroski BA, De Jonge MV, Cuccaro M, Crawford EL, Correia CT, Conroy J, Conceicao IC, Chiocchetti AG, Casey JP, Cai G, Cabrol C, Bolshakova N, Bacchelli E, Anney R, Gallinger S, Cotterchio M, Casey G, Zwaigenbaum L, Wittemeyer K, Wing K, Wallace S, van Engeland H, Tryfon A, Thomson S, Soorya L, Roge B, Roberts W, Poustka F, Mouga S, Minshew N, McInnes LA, McGrew SG, Lord C, Leboyer M, Le Couteur AS, Kolevzon A, Jimenez Gonzalez P, Jacob S, Holt R, Guter S, Green J, Green A, Gillberg C, Fernandez BA, Duque F, Delorme R, Dawson G, Chaste P, Cafe C, Brennan S, Bourgeron T, Bolton PF, Bolte S, Bernier R, Baird G, Bailey AJ, Anagnostou E, Almeida J, Wijsman EM, Vieland VJ, Vicente AM, Schellenberg GD, Pericak-Vance M, Paterson AD, Parr JR, Oliveira G, Nurnberger JI, Monaco AP, Maestrini E, Klauck SM, Hakonarson H, Haines JL, Geschwind DH, Freitag CM, Folstein SE, Ennis S, Coon H, Battaglia A, Szatmari P, Sutcliffe JS, Hallmayer J, Gill M, Cook EH, Buxbaum JD, Devlin B, Gallagher L, Betancur C, Scherer SW (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94:677–694
    1. Pizzagalli DA, Goetz E, Ostacher M, Iosifescu DV, Perlis RH (2008) Euthymic patients with bipolar disorder show decreased reward learning in a probabilistic reward task. Biol Psychiatry 64:162–168
    1. Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, Gambello MJ (2013) Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis 51:93–103
    1. Resendez SL, Namboodiri VMK, Otis JM, Eckman LEH, Rodriguez-Romaguera J, Ung RL, Basiri ML, Kosyk O, Rossi MA, Dichter GS, Stuber GD (2020) Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J Neurosci 40:2282–2295
    1. Roberts J, Symons F, Johnson AM, Hatton D, Boccia M (2005) Blink rate in boys with fragile X syndrome: preliminary evidence for altered dopamine function. J Intellect Disabil Res 49:647–656
    1. Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD (2020) Developments from bulk optogenetics to single-cell strategies to dissect the neural circuits that underlie aberrant motivational states. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a039792
    1. Salles J, Lacassagne E, Benvegnu G, Berthoumieu SC, Franchitto N, Tauber M (2020) The RDoC approach for translational psychiatry: could a genetic disorder with psychiatric symptoms help fill the matrix? The example of Prader-Willi syndrome. Transl Psychiatry 10:274
    1. Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M (2019) Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex. Annu Rev Genomics Hum Genet 20:217–240
    1. Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, Kaphzan H, Klann E (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493:411–415
    1. Schultz W (2019) Recent advances in understanding the role of phasic dopamine activity. F1000Res 8. https://doi.org/10.12688/f1000research.19793.1
    1. Semenova AA, Lopatina OL, Salmina AB (2020) Models of autism and methods for assessing autistic-like behavior in animals. Neurosci Behav Physiol 50:1024–1034
    1. Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y (2005) Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J Neurol Neurosurg Psychiatry 76:260–262
    1. Shaywitz BA, Yager RD, Klopper JH (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308
    1. Sikich L, Kolevzon A, King BH, McDougle CJ, Sanders KB, Kim SJ, Spanos M, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Witters Cundiff A, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Siecinski SK, Giamberardino SN, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, Gregory SG, Veenstra-VanderWeele J (2021) Intranasal oxytocin in children and adolescents with autism spectrum disorder. N Engl J Med 385(16):1462–1473. https://doi.org/10.1056/NEJMoa2103583 - DOI
    1. Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3:103ra97
    1. Soderstrom H, Rastam M, Gillberg C (2002) Temperament and character in adults with Asperger syndrome. Autism 6:287–297
    1. Staal WG (2015) Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. Eur Neuropsychopharmacol 25:1421–1426
    1. Terranova ML, Laviola G (2005) Scoring of social interactions and play in mice during adolescence. Curr Protoc Toxicol Chapter 13:Unit13.10
    1. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204:361–373
    1. Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011) Nucleus accumbens mu-opioid receptors mediate social reward. J Neurosci 31:6362–6370
    1. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651
    1. Tschida JE, Yerys BE (2021) A systematic review of the positive valence system in autism spectrum disorder. Neuropsychol Rev 31:58–88
    1. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914
    1. Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M (2008) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647
    1. Weber-Stadlbauer U, Richetto J, Zwamborn RAJ, Slieker RC, Meyer U (2021) Transgenerational modification of dopaminergic dysfunctions induced by maternal immune activation. Neuropsychopharmacology 46(2):404–412
    1. Whitton AE, Kumar P, Treadway MT, Rutherford AV, Ironside ML, Foti D, Fitzmaurice G, Du F, Pizzagalli DA (2021) Mapping disease course across the mood disorder spectrum through a research domain criteria framework. Biol Psychiatry Cogn Neurosci Neuroimaging 6(7):706–715
    1. Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, Lin HC (2018) D-Cycloserine ameliorates autism-like deficits by removing GluA2-containing AMPA receptors in a valproic acid-induced rat model. Mol Neurobiol 55:4811–4824
    1. Zurcher NR, Walsh EC, Phillips RD, Cernasov PM, Tseng CJ, Dharanikota A, Smith E, Li Z, Kinard JL, Bizzell JC, Greene RK, Dillon D, Pizzagalli DA, Izquierdo-Garcia D, Truong K, Lalush D, Hooker JM, Dichter GS (2021) A simultaneous [(11)C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl Psychiatry 11:33

Comorbidité du trouble déficitaire de l'attention avec hyperactivité et des "troubles du spectre de l'autisme" : situation actuelle et orientations prometteuses

Aperçu: G.M.

Des taux élevés de troubles concomitants du déficit de l'attention avec hyperactivité (TDAH) et des "troubles du spectre de l'autisme" (TSA) suggèrent des voies causales communes, qui attendent d'être élucidées.
Ce qui est bien établi, cependant, est l'impact négatif du TDAH et du TSA comorbides sur les résultats de la vie quotidienne, en particulier dans l'interaction sociale et la communication et sur la psychopathologie plus large.
Les approches neurocognitives suggèrent que les corrélats de la comorbidité sont enracinés dans les réseaux de connectivité fonctionnelle associés au contrôle exécutif. Il existe un soutien pour les origines familiales, avec des études de génétique moléculaire suggérant un rôle causal des gènes pléiotropes. Des recherches plus approfondies sont nécessaires pour élucider pleinement comment le risque génétique de TDAH et de TSA affecte le développement neurologique et pour identifier les corrélats neuronaux structurels et fonctionnels et leurs séquelles comportementales.
L'identification des phénotypes intermédiaires est nécessaire pour faire progresser la compréhension, ce qui nécessite des études qui incluent le spectre complet de la gravité des symptômes de TSA et de TDAH, utilisent des conceptions longitudinales et des méthodes multivariées pour sonder de larges constructions, telles que la fonction exécutive et sociale, et prennent en compte d'autres sources d'hétérogénéité, tels que l'âge, le sexe et d'autres psychopathologies.
Des essais d'efficacité randomisés ciblant la symptomatologie comorbide sont nécessaires pour atténuer les résultats négatifs sur le développement.

doi: 10.1007/7854_2022_334. 

Comorbidity of Attention-Deficit Hyperactivity Disorder and Autism Spectrum Disorders: Current Status and Promising Directions

Affiliations

Abstract

High rates of co-occurring Attention-Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD) suggest common causal pathways, which await elucidation. What is well-established, however, is the negative impact of comorbid ADHD and ASD on outcomes for everyday living, particularly in social interaction and communication and on broader psychopathology. Neurocognitive approaches suggest correlates of comorbidity are rooted in functional connectivity networks associated with executive control. There is support for familial origins, with molecular-genetic studies suggesting a causal role of pleiotropic genes. Further investigation is needed to elucidate fully how genetic risk for ADHD and ASD affects neurodevelopment and to identify structural and functional neural correlates and their behavioral sequelae. Identification of intermediate phenotypes is necessary to advance understanding, which requires studies that include the full spectrum of ASD and ADHD symptom severity, use longitudinal designs and multivariate methods to probe broad constructs, such as executive and social function, and consider other sources of heterogeneity, such as age, sex, and other psychopathology. Randomized efficacy trials targeting comorbid symptomatology are needed to mitigate negative developmental outcomes.

Keywords: Brain imaging; Executive control; Functional connectivity; Genetic.

Autisme : physiopathologie et plantes médicinales prometteuses

Aperçu: G.M.

L'autisme est une anomalie de croissance globale dans laquelle les compétences sociales, le langage, la communication et les compétences comportementales sont développées avec retard et comme diversion. Les causes de l'autisme ne sont pas claires, mais diverses théories sur la génétique, l'immunité, les facteurs biologiques et psychosociaux ont été proposées. En fait, l'autisme est un trouble complexe avec des causes distinctes qui coexistent généralement. Bien qu'aucun médicament n'ait été reconnu pour traiter ce trouble, les traitements pharmacologiques peuvent être efficaces pour réduire ses signes, tels que l'automutilation, l'agressivité, les comportements répétitifs et stéréotypés, l'inattention, l'hyperactivité et les troubles du sommeil. 

Récemment, des approches complémentaires et alternatives ont été envisagées pour traiter l'autisme. Le Ginkgo biloba est l'une des plantes les plus efficaces avec une longue histoire d'applications dans les troubles neuropsychologiques qui est récemment utilisée pour l'autisme. 

La présente revue traite des découvertes récentes, de la physiopathologie et de l'étiologie de l'autisme, puis aborde les résultats prometteurs des remèdes à base de plantes.

doi: 10.2174/1381612822666151112151529.

Autism: Pathophysiology and Promising Herbal Remedies

Affiliations

Abstract

Autism is a comprehensive growth abnormality in which social skills, language, communication, and behavioral skills are developed with delay and as diversionary. The reasons for autism are unclear, but various theories of genetics, immunity, biological, and psychosocial factors have been proffered. In fact, autism is a complex disorder with distinct causes that usually co-occur. Although no medicine has been recognized to treat this disorder, pharmacological treatments can be effective in reducing its signs, such as self-mutilation, aggression, repetitive and stereotyped behaviors, inattention, hyperactivity, and sleeping disorders. Recently, complementary and alternative approaches have been considered to treat autism. Ginkgo biloba is one of the most effective plants with an old history of applications in neuropsychological disorders which recently is used for autism. The present review discusses the recent findings, pathophysiology, and etiology of autism and thereafter addresses the promising results of herbal remedies.