01 novembre 2022

Évaluation d'un programme de formation des parents par télésanté au Japon : collaboration avec des parents pour enseigner de nouvelles compétences de demande aux enfants diagnostiqués avec un trouble du spectre de l'autisme

Aperçu: G.M.

Cette étude a développé un programme de formation des parents en télésanté pour enseigner aux parents d'enfants avec un diagnostic de troubles du spectre de l'autisme (dTDA) le processus de mise en œuvre de la formation mand au Japon et pour favoriser la diffusion internationale de stratégies de formation fondées sur des preuves.
Les sessions de formation des parents étaient basées sur un modèle de formation aux compétences comportementales (BST), combiné à des commentaires graphiques et vidéo hebdomadaires. Les séances ont été menées par un analyste-doctorant en comportement certifié résidant au Japon.
Quatre parents d'enfants avec un dTDA ont participé à cette étude. 

Les résultats confirment provisoirement l'efficacité et la validité sociale du programme.
Cette étude prolonge les recherches antérieures sur la formation des parents menées au Japon en comprenant toutes les caractéristiques suivantes :

  1. conception de programmes en ligne ;
  2. la formation des mandants ;
  3. Modèle BST ;
  4. des données session par session sur les changements de comportement des enfants et l'intégrité procédurale ;
  5. conception expérimentale intra-sujet; et
  6. évaluation de la validité sociale.
. 2022 Oct 24;1-12.
doi: 10.1007/s40617-022-007

Evaluation of a Telehealth Parent-Training Program in Japan: Collaboration with Parents to Teach Novel Mand Skills to Children Diagnosed with Autism Spectrum Disorder

Affiliations

Abstract

This study developed a telehealth parent-training program to teach parents of children with autism spectrum disorder the process of mand-training implementation in Japan, and to further the international dissemination of evidence-based training strategies. Parent-training sessions were based on a behavioral skills training (BST) model, combined with weekly graphic and video feedback. The sessions were conducted by a board-certified behavior analyst-doctoral residing in Japan. Four parents with children with autism spectrum disorder participated in this study. The results preliminarily support the effectiveness and social validity of the program. This study extends previous parent-training research conducted in Japan by comprising all of the following features: (1) online program design; (2) mand training; (3) BST model; (4) session-by-session data on children's behavioral changes and procedural integrity; (5) within-subject experimental design; and (6) social validity evaluation.

Keywords: Autism spectrum disorder; Behavioral skills training; International dissemination; Mand training; Parent training; Telehealth.

31 octobre 2022

Stimulation du nerf vague comme traitement de la peur et de l'anxiété chez les personnes avec un diagnostic de troubles du spectre de l'autisme

Aperçu: G.M.

Les troubles anxieux touchent un grand pourcentage de personnes avec un diagnostic de trouble du spectre de l'autisme (dTSA). Chez les enfants avec un dTSA, une anxiété excessive est également liée à des problèmes gastro-intestinaux, à des comportements d'automutilation et à des symptômes dépressifs. Les thérapies cognitivo-comportementales basées sur l'exposition sont des traitements efficaces pour les troubles anxieux chez les enfants avec un dTSA, mais des taux de rechute élevés indiquent la nécessité de stratégies de traitement supplémentaires. 

Cette perspective discute des preuves issues de la recherche préclinique, qui indiquent que la stimulation du nerf vague (SNV) associée à l'exposition à des stimuli et à des situations provoquant la peur pourrait offrir des avantages en tant que traitement adjuvant des troubles anxieux qui coexistent avec les TSA. 

La stimulation du nerf vague est approuvée pour une utilisation dans le traitement de l'épilepsie, de la dépression et, plus récemment, comme adjuvant dans l'entraînement de réadaptation après un AVC. 

Dans les modèles précliniques, la SNV semble prometteuse pour améliorer simultanément la consolidation des souvenirs d'extinction et réduire l'anxiété. Dans cette revue, nous présenterons les mécanismes potentiels par lesquels la SNV pourrait traiter la peur et l'anxiété dans les TSA. 

Nous discutons également des utilisations potentielles de la SNV pour traiter la dépression et l'épilepsie dans le contexte des TSA, et des méthodes non invasives pour stimuler le nerf vague.

 

Cliquer ICI pour accéder à l'intégralité de l'article en anglais

. 2022;7(4):e220007.
doi: 10.20900/jpbs.20220007. Epub 2022 Sep 23.

Vagus Nerve Stimulation as a Treatment for Fear and Anxiety in Individuals with Autism Spectrum Disorder

Affiliations

Abstract

Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.

Keywords: behavioral therapy; exposure therapy; neurodevelopmental disorders; neuromodulation; rehabilitation.

Conflict of interest statement

CONFLICTS OF INTEREST CT Engineer is married to an employee of MicroTransponder, Inc. CK McIntyre is an author of a patent entitled “Methods for Enhancing Exposure Therapy using Vagus Nerve Stimulation”.

References

    1. Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities MMWR Surveill Summ. 2016. Apr 1;65(3):1–23.
    1. Hyman SL, Levy SE, Myers SM, Kuo DZ, Apkon CS, Davidson LF, et al. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics. 2020;145(1):e20193447. - PubMed
    1. Hessl D, Libero L, Schneider A, Kerns C, Winder-Patel B, Heath B, et al. Fear Potentiated Startle in Children With Autism Spectrum Disorder: Association With Anxiety Symptoms and Amygdala Volume. Autism Res. 2021;14(3):450–63. - PMC - PubMed
    1. White SW, Oswald D, Ollendick T, Scahill L. Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev. 2009;29(3):216–29. - PMC - PubMed
    1. Vasa RA, Mazurek MO, Mahajan R, Bennett AE, Bernal MP, Nozzolillo AA, et al. Assessment and treatment of anxiety in youth with Autism spectrum disorders. Pediatrics. 2016;137:S115–23. - PubMed
    1. van Steensel FJA, Bögels SM, Perrin S. Anxiety Disorders in Children and Adolescents with Autistic Spectrum Disorders: A Meta-Analysis. Clin Child Fam Psychol Rev. 2011;14(3):302–17. - PMC - PubMed
    1. Postorino V, Kerns CM, Vivanti G, Bradshaw J, Siracusano M, Mazzone L. Anxiety Disorders and Obsessive-Compulsive Disorder in Individuals with Autism Spectrum Disorder. Curr Psychiatry Rep. 2017;19(12):92. - PMC - PubMed
    1. Haruvi-Lamdan N, Horesh D, Golan O. PTSD and autism spectrum disorder: Co-morbidity, gaps in research, and potential shared mechanisms. Psychol Trauma. 2018;10(3):290–9. - PubMed
    1. Wood JJ, Kendall PC, Wood KS, Kerns CM, Seltzer M, Small BJ, et al. Cognitive Behavioral Treatments for Anxiety in Children with Autism Spectrum Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2020;77(5):473–84.
    1. Wood JJ, Ehrenreich-May J, Alessandri M, Fujii C, Renno P, Laugeson E, et al. Cognitive Behavioral Therapy for Early Adolescents With Autism Spectrum Disorders and Clinical Anxiety: A Randomized, Controlled Trial. Behav Ther. 2015;46(1):7–19. - PMC - PubMed
    1. Powers MB, Smits JAJ, Otto MW, Sanders C, Emmelkamp PMG. Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomized placebo controlled trial of yohimbine augmentation. J Anxiety Disord. 2009. Apr;23(3):350–6. - PubMed
    1. Ressler KJ. Translating across circuits and genetics toward progress in fear- And anxiety-related disorders. Am J Psychiatry. 2020. Mar 1;177(3):214–22. - PMC - PubMed
    1. Higa-McMillan CK, Francis SE, Rith-Najarian L, Chorpita BF. Evidence Base Update: 50 Years of Research on Treatment for Child and Adolescent Anxiety. J Clin Child Adolesc Psychol. 2016;45(2):91–113. - PubMed
    1. Rauch SAM, Eftekhari A, Ruzek JI. Review of exposure therapy: A gold standard for PTSD treatment. J Rehabil Res Dev. 2012;49(5):679–88. - PubMed
    1. Watson DR, Garfinkel SN, van Praag CG, Willmott D, Wong K, Meeten F, et al. Computerized Exposure Therapy for Spider Phobia: Effects of Cardiac Timing and Interoceptive Ability on Subjective and Behavioral Outcomes. Psychosom Med. 2019;81(1):90–9. - PubMed
    1. Raeder F, Merz CJ, Margraf J, Zlomuzica A. The association between fear extinction, the ability to accomplish exposure and exposure therapy outcome in specific phobia. Sci Rep. 2020. Dec 1;10(1):4288. - PMC - PubMed
    1. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72. - PMC - PubMed
    1. Bouton ME. Context and behavioral processes in extinction. Learn Mem. 2004;11(5):485–94. - PubMed
    1. Maskey M, Rodgers J, Grahame V, Glod M, Honey E, Kinnear J, et al. A Randomised Controlled Feasibility Trial of Immersive Virtual Reality Treatment with Cognitive Behaviour Therapy for Specific Phobias in Young People with Autism Spectrum Disorder. J Autism Dev Disord. 2019;49(5):1912–27. - PMC - PubMed
    1. Church BA, Rice CL, Dovgopoly A, Lopata CJ, Thomeer ML, Nelson A, et al. Learning, plasticity, and atypical generalization in children with autism. Psychon Bull Rev. 2015;22(5):1342–8. - PubMed
    1. Tsuchiyagaito A, Hirano Y, Asano K, Oshima F, Nagaoka S, Takebayashi Y, et al. Cognitive-behavioral therapy for obsessive-compulsive disorder with and without autism spectrum disorder: Gray matter differences associated with poor outcome. Front Psychiatry. 2017;8(AUG):1–12. - PMC - PubMed
    1. Keefer A, Kreiser NL, Singh V, Blakeley-Smith A, Duncan A, Johnson C, et al. Intolerance of Uncertainty Predicts Anxiety Outcomes Following CBT in Youth with ASD. J Autism Dev Disord. 2017;47(12):3949–58. - PubMed
    1. Noble LJ, Chuah A, Callahan KK, Souza RR, McIntyre CK. Peripheral effects of vagus nerve stimulation on anxiety and extinction of conditioned fear in rats. Learn Mem. 2019;26(7):245–51. - PMC - PubMed
    1. George MS, Ward HE, Ninan PT, Pollack M, Nahas Z, Anderson B, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul. 2008;1(2):112–21. - PubMed
    1. Shah AP, Carreno FR, Wu H, Chung YA, Frazer A. Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: Comparison with desipramine. Neuroscience. 2016;322:273–86. - PMC - PubMed
    1. Mathew E, Tabet MN, Robertson NM, Hays SA, Rennaker RL, Kilgard MP, et al. Vagus nerve stimulation produces immediate dose-dependent anxiolytic effect in rats. J Affect Disord. 2020;265(May 2019):552–7. - PubMed
    1. Clark K, Krahl S, Smith D, Jensen R. Post-training Unilateral Vagal Stimulation Enhances Retention Performance in the Rat. Neurobiol Learn Mem. 1995;63:213–6. - PubMed
    1. Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA. Posttraining Electrical Stimulation of Vagal Afferents with Concomitant Vagal Efferent Inactivation Enhances Memory Storage Processes in the Rat. Neurobiol Learn Mem. 1998;70:364–73. - PubMed
    1. Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, et al. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem. 2021. Oct 1;184.
    1. Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry. 2013;73(11):1071–7. - PMC - PubMed
    1. Noble LJ, Gonzalez IJ, Meruva VB, Callahan KA, Belfort BD, Ramanathan KR, et al. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl Psychiatry. 2017;7(8):e1217. - PMC - PubMed
    1. Souza RR, Robertson NM, Pruitt DT, Gonzales PA, Hays SA, Rennaker RL, et al. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress. 2019;22(4):509–20. - PubMed
    1. Souza RR, Oleksiak CR, Tabet MN, Rennaker RL, Hays SA, Kilgard MP, et al. Vagus nerve stimulation promotes extinction generalization across sensory modalities. Neurobiol Learn Mem. 2021. May 1;181:107425. - PubMed
    1. Noble LJ, Meruva VB, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimul. 2019;12(1):9–18. - PMC - PubMed
    1. Groves DA, Brown VJ. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500. - PubMed
    1. Dawson J, Liu CY, Los Amigos R, Francisco GE, Cramer SC, Wolf SL, et al. Vagus Nerve Stimulation Paired with Rehabilitation for Upper Limb Motor Function 1 After Ischaemic Stroke (VNS-REHAB): A Randomised. Lancet. 2021;397(10824):1545–53. - PMC - PubMed
    1. Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord. 2017;9(1):1–8. - PMC - PubMed
    1. Wechsler TF, Mühlberger A, Kümpers F. Inferiority or even superiority of virtual reality exposure therapy in phobias?—A systematic review and quantitative meta-analysis on randomized controlled trials specifically comparing the efficacy of virtual reality exposure to gold standard in vivo exposure in Agoraphobia, Specific Phobia and Social Phobia. Front Psychol. 2019. Sep 10;10:1758. - PMC - PubMed
    1. Flygare O, Andersson E, Ringberg H, Hellstadius AC, Edbacken J, Enander J, et al. Adapted cognitive behavior therapy for obsessive-compulsive disorder with co-occurring autism spectrum disorder: A clinical effectiveness study. Autism. 2020. Jan 1;24(1):190–9. - PubMed
    1. Cooper AA, Kline AC, Graham B, Bedard-Gilligan M, Mello PG, Feeny NC, et al. Homework “Dose,” Type, and Helpfulness as Predictors of Clinical Outcomes in Prolonged Exposure for PTSD. Behav Ther. 2017;48:182–94. - PubMed
    1. Maples-Keller JL, Yasinski C, Manjin N, Rothbaum BO. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics. 2017;14(3):554–63. - PMC - PubMed
    1. Reger GM, Smolenski D, Edwards-Stewart A, Skopp NA, Rizzo A, Norr A. Does Virtual Reality Increase Simulator Sickness during Exposure Therapy for Post-Traumatic Stress Disorder? Telemed E Health. 2019;25(9):859–61.
    1. Cunningham CJ, Martínez JL. The Wandering Nerve: Positional Variations of the Cervical Vagus Nerve and Neurosurgical Implications. World Neurosurg. 2021;156:105–10. - PubMed
    1. Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia. 2017;58:85–90.
    1. Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2(1):94–8. - PubMed
    1. Butler AG, O’Callaghan EL, Allen AM, McDougall SJ. Use of a physiological reflex to standardize vagal nerve stimulation intensity improves data reproducibility in a memory extinction assay. Brain Stimul. 2021. Mar 1;14(2):450–9. - PubMed
    1. Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I. Single prolonged stress disrupts retention of extinguished fear in rats. Learn Mem. 2012;19(2):43–9. - PMC - PubMed
    1. Souza RR, Robertson NM, Mathew E, Tabet MN, Bucksot JE, Pruitt DT, et al. Efficient parameters of vagus nerve stimulation to enhance extinction learning in an extinction-resistant rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99(July 2019):109848. - PubMed
    1. Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Sharma P, et al. Cortical Map Plasticity as a Function of Vagus Nerve Stimulation Intensity. Brain Stimul. 2016;9(1):117–23. - PMC - PubMed
    1. Morrison RA, Hulsey DR, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimul. 2019. Mar 1;12(2):256–62. - PMC - PubMed
    1. Buell EP, Loerwald KW, Engineer CT, Borland MS, Buell JM, Kelly CA, et al. Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul. 2018. Nov 1;11(6):1218–24. - PMC - PubMed
    1. Hassert DL, Miyashita T, Williams CL. The Effects of Peripheral Vagal Nerve Stimulation at a Memory-Modulating Intensity on Norepinephrine Output in the Basolateral Amygdala. Behav Neurosci. 2004. Feb;118(1):79–88. - PubMed
    1. Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007. Nov 7;1179(1):28–34. - PubMed
    1. Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 2006. Nov 13;1119(1):124–32. - PMC - PubMed
    1. Furini CRG, Behling JAK, Zinn CG, Zanini ML, Assis Brasil E, Pereira LD, et al. Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors. Behav Brain Res. 2017. May 30;326:303–6. - PubMed
    1. McIntyre CK, Hatfield T, McGaugh JL. Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur J Neurosci. 2002;16(7):1223–6. - PubMed
    1. Howells FM, Stein DJ, Russell VA. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab Brain Dis. 2012;27(3):267–74. - PubMed
    1. Hulsey DR, Riley JR, Loerwald KW, Rennaker RL, Kilgard MP, Hays SA. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol. 2017. Mar 1;289:21–30. - PMC - PubMed
    1. PeñA DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the Amygdala. Front Behav Neurosci. 2014;8(September):1–8. - PMC - PubMed
    1. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011. Feb 3;470(7332):101–6. - PMC - PubMed
    1. Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, et al. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol. 2019;122:659–71. - PMC - PubMed
    1. Stanton P, Sarvey JM. Blockade of Norepinephrine-Induced Long-Lasting Potentiation in the Hippocampal Dentate Gyrus by an Inhibitor of Protein Synthesis. Brain Res. 1985;361(1–2):276–83. - PubMed
    1. Neuman RS, Harley CW. Long-lasting potentiation of the dentate gyrus population spike by norepinephrine. Brain Res. 1983;273(1):162–5. - PubMed
    1. Salgado H, Köhr G, Trevĩo M. Noradrenergic tone determines dichotomous control of cortical spike-timing-dependent plasticity. Sci Rep. 2012;2:417. - PMC - PubMed
    1. Lemon N, Aydin-Abidin S, Funke K, Manahan-Vaughan D. Locus coeruleus activation facilitates memory encoding and induces hippocampal LTD that depends on β-Adrenergic receptor activation. Cerebral Cortex. 2009. Dec;19(12):2827–37. - PMC - PubMed
    1. Hagena H, Hansen N, Manahan-Vaughan D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cerebral Cortex. 2016. Apr 1;26(4):1349–64. - PMC - PubMed
    1. O’dell TJ, Connor SA, Guglietta R, Nguyen P v. b-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem. 2015;22(9):461–71. - PMC - PubMed
    1. Pudovkina OL, Cremers TIFH, Westerink BHC. The interaction between the locus coeruleus and dorsal raphe nucleus studied with dual-probe microdialysis. Eur J Pharmacol. 2002;445(1–2):37–42. - PubMed
    1. Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Seth A, Biomedical T, et al. Norepinephrine and seretonin are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol. 2019;320:112975. - PMC - PubMed
    1. Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry. 2011;70(10):937–45. - PubMed
    1. Stewart A, Huang J, Fisher RA. RGS proteins in heart: Brakes on the vagus. Front Physiol. 2012;3:95. - PMC - PubMed
    1. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81–102. - PMC - PubMed
    1. Celen C, Chuang JC, Luo X, Nijem N, Walker AK, Chen F, et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. Elife. 2017;6:e25730. - PMC - PubMed
    1. Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism. 2019;10(1):15. - PMC - PubMed
    1. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, et al. Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits. Cell Rep. 2017. Apr 11;19(2):335–50. - PMC - PubMed
    1. Olmos-Serrano JL, Corbin JG. Amygdala regulation of fear and emotionality in fragile X syndrome. Dev Neurosci. 2011;33(5):365–78. - PMC - PubMed
    1. Varcin KJ, Alvares GA, Uljarević M, Whitehouse AJO. Prenatal maternal stress events and phenotypic outcomes in Autism Spectrum Disorder. Autism Res. 2017;10(11):1866–77. - PubMed
    1. Ratnaseelan AM, Tsilioni I, Theoharides TC. Effects of Mycotoxins on Neuropsychiatric Symptoms and Immune Processes. Clin Ther. 2018;40(6):903–17. - PubMed
    1. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. Original articles A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet. 2000;37:489–97. - PMC - PubMed
    1. Rasalam AD; Hailey H; Williams JHG; Moore S et al. Characteristics of fetal anticonvulsant syndrome-associated autistic disorder. Dev Med Child Neurol. 2005;130(2):556.
    1. Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-ΚB pathway dependent of HDAC3. J Neuroinflammation. 2018;15(1):1–14. - PMC - PubMed
    1. Gifford JJ, Norton SA, Kusnecov AW, Wagner GC. Valproic acid induces nuclear factor erythroid 2-related factor 2 expression in fetal and neonatal brains but not in adult brain: Evidence of the gamma-aminobutyric acid-shift hypothesis. Neuroreport. 2020;433–6. - PubMed
    1. Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, et al. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol. 2018;17(10):926–46.
    1. Markram K, Rinaldi T, la Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology. 2008;33(4):901–12. - PubMed
    1. Banerjee A, Engineer CT, Sauls BL, Morales AA, Kilgard MP, Ploski JE. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front Behav Neurosci. 2014;8(November):1–13. - PMC - PubMed
    1. Hou Q, Wang Y, Li Y, Chen D, Yang F, Wang S. A developmental study of abnormal behaviors and altered GABAergic signaling in the VPA-treated rat model of autism. Front Behav Neurosci. 2018;12(August):1–15. - PMC - PubMed
    1. Pacheva I, Ivanov I, Yordanova R, Gaberova K, Galabova F, Panova M, et al. Epilepsy in Children with Autistic Spectrum Disorder. Children. 2019;6(2):15.
    1. Besag FMC. Epilepsy in patients with autism: Links, risks and treatment challenges. Neuropsychiatr Dis Treat. 2018;14:1–10. - PMC - PubMed
    1. Galli R, Bonanni E, Pizzanelli C, Maestri M, Lutzemberger L, Giorgi FS, et al. Daytime vigilance and quality of life in epileptic patients treated with vagus nerve stimulation. Epilepsy Behav. 2003;4(2):185–91. - PubMed
    1. Hallböök T, Lundgren J, Köhler S, Blennow G, Strömblad LG, Rosén I. Beneficial effects on sleep of vagus nerve stimulation in children with therapy resistant epilepsy. Eur J Paediatric Neurol. 2005;9(6):399–407.
    1. Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: Results from the vagus nerve stimulation therapy patient outcome registry. J Neurosurg Pediatr. 2010;5(6):595–602. - PubMed
    1. Manning KE, McAllister CJ, Ring HA, Finer N, Kelly CL, Sylvester KP, et al. Novel insights into maladaptive behaviours in Prader-Willi syndrome: Serendipitous findings from an open trial of vagus nerve stimulation. J Intellect Disabil Res. 2016;60(2):149–55. - PMC - PubMed
    1. Park YD. The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism. Epilepsy Behav. 2003;4(3):286–90. - PubMed
    1. Hull MM, Madhavan D, Zaroff CM. Autistic spectrum disorder, epilepsy, and vagus nerve stimulation. Child Nerv Syst. 2015;31(8):1377–85.
    1. van Hoorn A, Carpenter T, Oak K, Laugharne R, Ring H, Shankar R. Neuromodulation of autism spectrum disorders using vagal nerve stimulation. J Clin Neurosci. 2019;63:8–12. - PubMed
    1. Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res. 2013;207:275–99. - PMC - PubMed
    1. Chandrasekhar T, Sikich L. Challenges in the diagnosis and treatment of depression in autism spectrum disorders across the lifespan. Dialogues Clin Neurosci. 2015;17(2):219–27. - PMC - PubMed
    1. Turygin NC, Matson JL, MacMillan K, Konst M. The Relationship Between Challenging Behavior and Symptoms of Depression in Intellectually Disabled Adults with and without Autism Spectrum Disorders. J Dev Phys Disabil. 2013. Aug;25(4):475–84.
    1. Fiksdal A, Hanlin L, Kuras Y, Gianferante D, Chen X, Thoma MV, et al. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology. 2019. Apr 1;102:44–52. - PMC - PubMed
    1. O’Keane V, Dinan TG, Scott L, Corcoran C. Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry. 2005;58(12):963–8. - PubMed
    1. Chen X, Liang H, Hu K, Sun Q, Sun B, Bian L, et al. Vagus nerve stimulation suppresses corticotropin-releasing factor-induced adrenocorticotropic hormone release in rats. Neuroreport. 2021;792–6. - PubMed
    1. Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, et al. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: Comparison of response, remission, and suicidality. Am J Psychiatry. 2017. Jul 1;174(7):640–8. - PubMed
    1. Childs JE, Alvarez-Dieppa AC, McIntyre CK, Kroener S. Vagus nerve stimulation as a tool to induce plasticity in pathways relevant for extinction learning. J Vis Exp. 2015;2015(102):1–12.
    1. Sivaji V, Grasse DW, Hays SA, Bucksot JE, Saini R, Kilgard MP, et al. ReStore: A wireless peripheral nerve stimulation system. J Neurosci Methods. 2019. May 15;320:26–36. - PMC - PubMed
    1. Rong PJ, Fang JL, Wang LP, Meng H, Liu J, Ma YG, et al. Transcutaneous vagus nerve stimulation for the treatment of depression: A study protocol for a double blinded randomized clinical trial. BMC Complement Altern Med. 2012;12:255. - PMC - PubMed
    1. Jin Y, Kong J. Transcutaneous vagus nerve stimulation: A promising method for treatment of autism spectrum disorders. Front Neurosci. 2017;10(JAN):1–7.
    1. Liu J, Fang J, Wang Z, Rong P, Hong Y, Fan Y, et al. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J Affect Disord. 2016;205:319–26. - PubMed
    1. Genheimer H, Andreatta M, Asan E, Pauli P. Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci Rep. 2017;7(1):1–13. - PMC - PubMed
    1. Burger AM, van Diest I, van der Does W, Korbee JN, Waziri N, Brosschot JF, et al. The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol Learn Mem. 2019. May 1;161:192–201. - PubMed
    1. Ben-Menachem E Vagus Nerve Stimulation, Side Effects, and Long-Term Safety. J Clin Neurophysiol. 2001;18(5):415–8. - PubMed


01 juin 2022

RENFORCEMENT MUSCULAIRE : 1 heure par semaine suffit à réduire de 20 % le risque de décès

Résumé :

Les exercices de renforcement musculaire doivent faire partie d’un programme d’exercice complet, bénéfique à la santé, ainsi, cette forme d'exercice ne doit pas être oubliée. 

C’est le rappel de cette méta-analyse des preuves disponibles dans la littérature, publiée dans le British Journal of Sports Medicine : 30 à 60 minutes d'activité de renforcement musculaire hebdomadaire s’avèrent liées à un risque de décès inférieur de 10 à 20 %, toutes causes confondues. 

Le principe donc, pour de meilleurs bénéfices : combiner les exercices de force à l'activité aérobie.

 

Extrait :

L'étude impliquant près de 4.000 participants, âgés de 18 à 97 ans, montre que :

  • les exercices de renforcement musculaire sont associés à une réduction du risque de décès de 10 à 17 % ;
  • à un risque également réduit de décès par maladie cardiaque et accident vasculaire cérébral, cancer, diabète et cancer du poumon ;
  • aucune association n’est identifiée entre le renforcement musculaire et un risque réduit de types spécifiques de cancer, notamment ceux de l'intestin, des reins, de la vessie ou du pancréas ;
  • l’association est en courbe en forme de J avec une réduction maximale du risque de 10 à 20 % avec environ 30 à 60 minutes/semaine d'activités de renforcement musculaire pour les décès toutes causes confondues, les maladies cardiovasculaires et tous les cancers ;
  • l’association est en forme de L cependant pour le diabète, avec une réduction importante du risque jusqu'à 60 minutes/semaine d'activités de renforcement musculaire, après quoi la diminution du bénéfice est progressive ;
  • la réduction du risque de décès toutes causes confondues, de maladies cardiovasculaires et de cancer est encore plus élevée lorsque les 2 types d'activités, renforcement musculaire et aérobie, sont combinées.

 

Lien vers l'article de SantéLog en français

Lien vers l'article complet du British Journal of Sports Medecine