Les exercices de renforcement musculaire
doivent faire partie d’un programme d’exercice complet, bénéfique à la
santé, ainsi, cette forme d'exercice ne doit pas être oubliée.
C’est le
rappel de cette méta-analyse des preuves disponibles dans la
littérature, publiée dans le British Journal of Sports Medicine : 30 à
60 minutes d'activité de renforcement musculaire hebdomadaire s’avèrent
liées à un risque de décès inférieur de 10 à 20 %, toutes causes
confondues.
Le principe donc, pour de meilleurs bénéfices : combiner les exercices de force à l'activité aérobie.
Extrait :
L'étude impliquant près de 4.000 participants, âgés de 18 à 97 ans, montre que :
les exercices de renforcement musculaire sont associés à une réduction du risque de décès de 10 à 17 % ;
à un risque également réduit de décès par maladie cardiaque et
accident vasculaire cérébral, cancer, diabète et cancer du poumon ;
aucune association n’est identifiée entre le renforcement musculaire
et un risque réduit de types spécifiques de cancer, notamment ceux de
l'intestin, des reins, de la vessie ou du pancréas ;
l’association est en courbe en forme de J avec une réduction
maximale du risque de 10 à 20 % avec environ 30 à 60 minutes/semaine
d'activités de renforcement musculaire pour les décès toutes causes
confondues, les maladies cardiovasculaires et tous les cancers ;
l’association est en forme de L cependant pour le diabète, avec une
réduction importante du risque jusqu'à 60 minutes/semaine d'activités de
renforcement musculaire, après quoi la diminution du bénéfice est
progressive ;
la réduction du risque de décès toutes causes confondues, de
maladies cardiovasculaires et de cancer est encore plus élevée lorsque
les 2 types d'activités, renforcement musculaire et aérobie, sont
combinées.
Bien que le "trouble du spectre de l'autisme" (TSA) soit défini par une communication sociale altérée et des comportements et intérêts restreints et répétitifs, le TSA se caractérise également par des processus motivationnels altérés. La « théorie de la motivation sociale de l'autisme » décrit comment les perturbations de la motivation sociale dans les TSA dans la petite enfance peuvent entraver la volonté de s'engager dans des comportements sociaux réciproques et finalement interférer avec le développement de réseaux de neurones essentiels à la communication sociale (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Il est important de noter que les études cliniques et la recherche préclinique utilisant des organismes modèles pour les TSA indiquent que les troubles de la motivation dans les TSA ne sont pas limités aux récompenses sociales, mais sont également évidents en réponse à une gamme de récompenses non sociales. De plus, des études translationnelles sur certains troubles neurodéveloppementaux génétiquement définis associés aux TSA indiquent que ces formes syndromiques de TSA sont également caractérisées par des déficits motivationnels et des troubles dopaminergiques mésolimbiques.
Dans ce chapitre, nous résumons les recherches cliniques et précliniques pertinentes pour les troubles du traitement des récompenses dans les TSA et les troubles neurodéveloppementaux connexes. Nous proposons également une nosologie pour décrire les troubles du traitement des récompenses dans ces troubles qui utilise un modèle à trois axes. Dans cette nosologie triaxiale, le premier axe définit la direction de la réponse de récompense (c'est-à-dire anhédonique, hyperhédonique); le deuxième axe définit la construction du processus de récompense (par exemple, aimer la récompense, vouloir la récompense); et le troisième axe définit le contexte de la réponse de récompense (par exemple, social, non social). Une nosologie plus précise pour décrire les troubles du traitement des récompenses dans les TSA et les troubles neurodéveloppementaux connexes facilitera la traduction de la recherche préclinique en investigations cliniques qui contribueront finalement à accélérer le développement d'interventions ciblant les systèmes de motivation pour les TSA et les troubles neurodéveloppementaux connexes.
Although autism spectrum disorder (ASD) is defined by impaired
social communication and restricted and repetitive behaviors and
interests, ASD is also characterized by impaired motivational processes.
The "social motivation theory of autism" describes how social
motivation disruptions in ASD in early childhood may impede the drive to
engage in reciprocal social behaviors and ultimately interfere with the
development of neural networks critical for social communication
(Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly,
clinical studies and preclinical research using model organisms for ASD
indicate that motivational impairments in ASD are not constrained to
social rewards but are evident in response to a range of nonsocial
rewards as well. Additionally, translational studies on certain
genetically defined neurodevelopmental disorders associated with ASD
indicate that these syndromic forms of ASD are also characterized by
motivational deficits and mesolimbic dopamine impairments. In this
chapter we summarize clinical and preclinical research relevant to
reward processing impairments in ASD and related neurodevelopmental
disorders. We also propose a nosology to describe reward processing
impairments in these disorders that uses a three-axes model. In this
triaxial nosology, the first axis defines the direction of the reward
response (i.e., anhedonic, hyperhedonic); the second axis defines the
construct of the reward process (e.g., reward liking, reward wanting);
and the third axis defines the context of the reward response (e.g.,
social, nonsocial). A more precise nosology for describing reward
processing impairments in ASD and related neurodevelopmental disorders
will aid in the translation of preclinical research to clinical
investigations which will ultimately help to speed up the development of
interventions that target motivational systems for ASD and related
neurodevelopmental disorders.
Keywords:
Autism; Dopamine; Preclinical; Reward; Social motivation.
Alugubelly N, Mohammed AN, Edelmann MJ, Nanduri B, Sayed M,
Park JW, Carr RL (2019) Adolescent rat social play: Amygdalar proteomic
and transcriptomic data. Data Brief 27:104589
American Psychiatric Association (2013) Desk reference to
the diagnostic criteria from DSM-5. American Psychiatric Publishing,
Washington
APA (2013) Diagnostic and statistical manual of mental
disorders: DSM-V, 5th edn. American Psychiatric Association, Washington
Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young
AH, Howes OD (2017) The dopamine hypothesis of bipolar affective
disorder: the state of the art and implications for treatment. Mol
Psychiatry 22:666–679
Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke
S, Abdallah M, Parner ET (2010) Maternal infection requiring
hospitalization during pregnancy and autism spectrum disorders. J Autism
Dev Disord 40:1423–1430
Atzil S, Touroutoglou A, Rudy T, Salcedo S, Feldman R,
Hooker JM, Dickerson BC, Catana C, Barrett LF (2017) Dopamine in the
medial amygdala network mediates human bonding. Proc Natl Acad Sci U S A
114:2361–2366
Auerbach RP, Pagliaccio D, Pizzagalli DA (2019) Toward an
improved understanding of anhedonia. JAMA Psychiatry 76:571–573
Bale TL, Abel T, Akil H, Carlezon WA Jr, Moghaddam B,
Nestler EJ, Ressler KJ, Thompson SM (2019) The critical importance of
basic animal research for neuropsychiatric disorders.
Neuropsychopharmacology 44:1349–1353
Bariselli S, Tzanoulinou S, Glangetas C, Prevost-Solie C,
Pucci L, Viguie J, Bezzi P, O'Connor EC, Georges F, Luscher C, Bellone C
(2016) SHANK3 controls maturation of social reward circuits in the VTA.
Nat Neurosci 19:926–934
Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting
components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin
Pharmacol 9:65–73
Berry Kravis E, Lewin F, Wuu J, Leehey M, Hagerman R,
Hagerman P, Goetz CG (2003) Tremor and ataxia in fragile X premutation
carriers: blinded videotape study. Ann Neurol 53:616–623
Bishop SL, Farmer C, Bal V, Robinson EB, Willsey AJ, Werling
DM, Havdahl KA, Sanders SJ, Thurm A (2017) Identification of
developmental and behavioral markers associated with genetic
abnormalities in autism spectrum disorder. Am J Psychiatry 174:576–585
Bittel DC, Butler MG (2005) Prader-Willi syndrome: clinical
genetics, cytogenetics and molecular biology. Expert Rev Mol Med 7:1–20
Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K,
Walz C, Bolliger MF, Sudhof TC, Powell CM (2010) Neuroligin-1 deletion
results in impaired spatial memory and increased repetitive behavior. J
Neurosci 30:2115–2129
Bortolato M, Godar SC, Alzghoul L, Zhang J, Darling RD,
Simpson KL, Bini V, Chen K, Wellman CL, Lin RC, Shih JC (2013) Monoamine
oxidase A and A/B knockout mice display autistic-like features. Int J
Neuropsychopharmacol 16:869–888
Bottini S (2018) Social reward processing in individuals
with autism spectrum disorder: a systematic review of the social
motivation hypothesis. Res Autism Spectr Disord 45:9–26
Bozarth MA (1990) Drug addiction as a psychobiological
process. In: Warburto DM (ed) Addiction controversies. Harwood Academic
Publishers, London, pp 112–134
Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL,
Takahashi N, Kajiwara Y, Yang M, Katz AM, Scattoni ML, Harris MJ, Saxena
R, Silverman JL, Crawley JN, Zhou Q, Hof PR, Buxbaum JD (2010)
Haploinsufficiency of the autism-associated Shank3 gene leads to
deficits in synaptic function, social interaction, and social
communication. Mol Autism 1:15
Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly
S, Genestine M, Millonig JH, DiCicco-Bloom E, Crawley JN (2012)
Autism-relevant social abnormalities and cognitive deficits in
engrailed-2 knockout mice. PLoS One 7:e40914
Brodkin ES (2008) Social behavior phenotypes in fragile X
syndrome, autism, and the Fmr1 knockout mouse: theoretical comment on
McNaughton et al. (2008). Behav Neurosci 122:483–489
Campbell LE, Daly E, Toal F, Stevens A, Azuma R, Catani M,
Ng V, van Amelsvoort T, Chitnis X, Cutter W, Murphy DG, Murphy KC (2006)
Brain and behaviour in children with 22q11.2 deletion syndrome: a
volumetric and voxel-based morphometry MRI study. Brain 129:1218–1228
Carlezon WA Jr, Kim W, Missig G, Finger BC, Landino SM,
Alexander AJ, Mokler EL, Robbins JO, Li Y, Bolshakov VY, McDougle CJ,
Kim KS (2019) Maternal and early postnatal immune activation produce
sex-specific effects on autism-like behaviors and neuroimmune function
in mice. Sci Rep 9:16928
Carter RM, Jung H, Reaven J, Blakeley-Smith A, Dichter GS
(2020) A nexus model of restricted interests in autism spectrum
disorder. Front Hum Neurosci 14:212
Ceravolo R, Antonini A, Volterrani D, Rossi C, Goldwurm S,
Di Maria E, Kiferle L, Bonuccelli U, Murri L (2005) Dopamine transporter
imaging study in parkinsonism occurring in fragile X premutation
carriers. Neurology 65:1971–1973
Chevallier C, Grezes J, Molesworth C, Berthoz S, Happe F
(2012a) Brief report: selective social anhedonia in high functioning
autism. J Autism Dev Disord 42:1504–1509
Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT
(2012b) The social motivation theory of autism. Trends Cogn Sci
16:231–239
Clements CC, Zoltowski AR, Yankowitz LD, Yerys BE, Schultz
RT, Herrington JD (2018) Evaluation of the social motivation hypothesis
of autism: a systematic review and meta-analysis. JAMA Psychiatry
75:797–808
Crawford DC, Acuna JM, Sherman SL (2001) FMR1 and the
fragile X syndrome: human genome epidemiology review. Genet Med
3:359–371
Dalton KM, Holsen L, Abbeduto L, Davidson RJ (2008) Brain
function and gaze fixation during facial-emotion processing in fragile X
and autism. Autism Res 1:231–239
Dawson G, Webb SJ, McPartland J (2005) Understanding the
nature of face processing impairment in autism: insights from behavioral
and electrophysiological studies. Dev Neuropsychol 27:403–424
de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016)
Advancing the understanding of autism disease mechanisms through
genetics. Nat Med 22:345–361
Del Pino I, Rico B, Marin O (2018) Neural circuit
dysfunction in mouse models of neurodevelopmental disorders. Curr Opin
Neurobiol 48:174–182
DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD
(2008) Gabrb3 gene deficient mice exhibit impaired social and
exploratory behaviors, deficits in non-selective attention and
hypoplasia of cerebellar vermal lobules: a potential model of autism
spectrum disorder. Behav Brain Res 187:207–220
Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22:229–237
DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh
KE, West A, Hashemi P, Herborg F, Rickhag M, Chen H, Gether U, Wallace
MT, Galli A (2019) Autism-linked dopamine transporter mutation alters
striatal dopamine neurotransmission and dopamine-dependent behaviors. J
Clin Invest 129:3407–3419
Dichter GS, Damiano CA, Allen JA (2012) Reward circuitry
dysfunction in psychiatric and neurodevelopmental disorders and genetic
syndromes: animal models and clinical findings. J Neurodev Disord 4:19
Dolen G (2015) Autism: oxytocin, serotonin, and social reward. Soc Neurosci 10:450–465
Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social
reward requires coordinated activity of nucleus accumbens oxytocin and
serotonin. Nature 501:179–184
Du L, Zhao G, Duan Z, Li F (2017) Behavioral improvements in
a valproic acid rat model of autism following vitamin D
supplementation. Psychiatry Res 253:28–32
Dufour-Rainfray D, Vourc'h P, Le Guisquet AM, Garreau L,
Ternant D, Bodard S, Jaumain E, Gulhan Z, Belzung C, Andres CR, Chalon
S, Guilloteau D (2010) Behavior and serotonergic disorders in rats
exposed prenatally to valproate: a model for autism. Neurosci Lett
470:55–59
Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM
(1997) Low medial prefrontal dopaminergic activity in autistic children.
Lancet 350:638
Estes ML, McAllister AK (2016) Maternal immune activation:
implications for neuropsychiatric disorders. Science 353:772–777
Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse
neurexin-1alpha deletion causes correlated electrophysiological and
behavioral changes consistent with cognitive impairments. Proc Natl Acad
Sci U S A 106:17998–18003
Fallgatter AJ, Lesch KP (2007) 22q11.2 deletion syndrome as a
natural model for COMT haploinsufficiency-related dopaminergic
dysfunction in ADHD. Int J Neuropsychopharmacol 10:295–299
Fiksinski AM, Schneider M, Zinkstok J, Baribeau D, Chawner
S, Vorstman JAS (2021) Neurodevelopmental trajectories and psychiatric
morbidity: lessons learned from the 22q11.2 deletion syndrome. Curr
Psychiatry Rep 23:13
Franchini M, Armstrong VL, Schaer M, Smith IM (2019)
Initiation of joint attention and related visual attention processes in
infants with autism spectrum disorder: literature review. Child
Neuropsychol 25:287–317
Gadow KD, Devincent CJ, Olvet DM, Pisarevskaya V, Hatchwell E
(2010a) Association of DRD4 polymorphism with severity of oppositional
defiant disorder, separation anxiety disorder and repetitive behaviors
in children with autism spectrum disorder. Eur J Neurosci 32:1058–1065
Gadow KD, DeVincent CJ, Pisarevskaya V, Olvet DM, Xu W,
Mendell NR, Finch SJ, Hatchwell E (2010b) Parent-child DRD4 genotype as a
potential biomarker for oppositional, anxiety, and repetitive behaviors
in children with autism spectrum disorder. Prog Neuro-Psychopharmacol
Biol Psychiatry 34:1208–1214
Geschwind DH, State MW (2015) Gene hunting in autism
spectrum disorder: on the path to precision medicine. Lancet Neurol
14:1109–1120
Greene RK, Spanos M, Alderman C, Walsh E, Bizzell J, Mosner
MG, Kinard JL, Stuber GD, Chandrasekhar T, Politte LC, Sikich L, Dichter
GS (2018) The effects of intranasal oxytocin on reward circuitry
responses in children with autism spectrum disorder. J Neurodev Disord
10:12
Greene RK, Walsh E, Mosner MG, Dichter GS (2019) A potential
mechanistic role for neuroinflammation in reward processing impairments
in autism spectrum disorder. Biol Psychol 142:1–12
Gunaydin LA, Deisseroth K (2014) Dopaminergic dynamics
contributing to social behavior. Cold Spring Harb Symp Quant Biol
79:221–227
Hervas A (2016) One autism, several autisms. Phenotypical
variability in autism spectrum disorders. Rev Neurol 62 Suppl 1:S9–S14
Higashida H, Munesue T, Kosaka H, Yamasue H, Yokoyama S,
Kikuchi M (2019) Social interaction improved by oxytocin in the subclass
of autism with comorbid intellectual disabilities. Diseases 7:24
Holsen L, Thompson T (2004) Compulsive behavior and eye
blink in Prader-Willi syndrome: neurochemical implications. Am J Ment
Retard 109:197–207
Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh
JJ, Lewis EM, Luo L, Deisseroth K, Dolen G, Malenka RC (2017) Gating of
social reward by oxytocin in the ventral tegmental area. Science
357:1406–1411
Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K,
Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new
classification framework for research on mental disorders. Am J
Psychiatry 167:748–751
Johnson KP, Zarrinnegar P (2021) Autism spectrum disorder and sleep. Child Adolesc Psychiatr Clin N Am 30:195–208
Johnson SA, Yechiam E, Murphy RR, Queller S, Stout JC (2006)
Motivational processes and autonomic responsivity in Asperger’s
disorder: evidence from the Iowa Gambling Task. J Int Neuropsychol Soc
12:668–676
Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T,
Bolton PF (2003) Learning disability and epilepsy in an epidemiological
sample of individuals with tuberous sclerosis complex. Psychol Med
33:335–344
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M,
Crawley JN (2016) Translational mouse models of autism: advancing toward
pharmacological therapeutics. Curr Top Behav Neurosci 28:1–52
Keifer CM, Day TC, Hauschild KM, Lerner MD (2021) Social and
nonsocial reward anticipation in typical development and autism
spectrum disorders: current status and future directions. Curr
Psychiatry Rep 23:32
Kenkel WM, Yee JR, Moore K, Madularu D, Kulkarni P, Gamber
K, Nedelman M, Ferris CF (2016) Functional magnetic resonance imaging in
awake transgenic fragile X rats: evidence of dysregulation in reward
processing in the mesolimbic/habenular neural circuit. Transl Psychiatry
6:e763
Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual
fixation patterns during viewing of naturalistic social situations as
predictors of social competence in individuals with autism. Arch Gen
Psychiatry 59:809–816
Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009)
Two-year-olds with autism orient to non-social contingencies rather than
biological motion. Nature 459:257–261
Kosillo P, Doig NM, Ahmed KM, Agopyan-Miu A, Wong CD,
Conyers L, Threlfell S, Magill PJ, Bateup HS (2019) Tsc1-mTORC1
signaling controls striatal dopamine release and cognitive flexibility.
Nat Commun 10:5426
Kubota M, Fujino J, Tei S, Takahata K, Matsuoka K, Tagai K,
Sano Y, Yamamoto Y, Shimada H, Takado Y, Seki C, Itahashi T, Aoki YY,
Ohta H, Hashimoto RI, Zhang MR, Suhara T, Nakamura M, Takahashi H, Kato
N, Higuchi M (2020) Binding of dopamine D1 receptor and noradrenaline
transporter in individuals with autism spectrum disorder: a PET study.
Cereb Cortex 30(12):6458–6468
Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W,
Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization
and social interaction in mice. Neuron 50:377–388
Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910
Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374:1627–1638
Lightbody AA, Reiss AL (2009) Gene, brain, and behavior
relationships in fragile X syndrome: evidence from neuroimaging studies.
Dev Disabil Res Rev 15:343–352
Loas G, Krystkowiak P, Godefroy O (2012) Anhedonia in
Parkinson’s disease: an overview. J Neuropsychiatry Clin Neurosci
24:444–451
Luck C, Vitaterna MH, Wevrick R (2016) Dopamine pathway
imbalance in mice lacking Magel2, a Prader-Willi syndrome candidate
gene. Behav Neurosci 130:448–459
Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY (2015)
Exploring the validity of valproic acid animal model of autism. Exp
Neurobiol 24:285–300
Manduca A, Servadio M, Damsteegt R, Campolongo P,
Vanderschuren LJ, Trezza V (2016) Dopaminergic neurotransmission in the
nucleus accumbens modulates social play behavior in rats.
Neuropsychopharmacology 41(9):2215–2223
Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H
(2008) Abnormal fear conditioning and amygdala processing in an animal
model of autism. Neuropsychopharmacology 33:901–912
McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen
A, Vorstman JA, Zackai EH, Emanuel BS, Vermeesch JR, Morrow BE,
Scambler PJ, Bassett AS (2015) 22q11.2 deletion syndrome. Nat Rev Dis
Primers 1:15071
Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang
CH, Hillman RE, Farmer JE (2005) Essential versus complex autism:
definition of fundamental prognostic subtypes. Am J Med Genet A
135:171–180
Miller JL, James GA, Goldstone AP, Couch JA, He G, Driscoll
DJ, Liu Y (2007) Enhanced activation of reward mediating prefrontal
regions in response to food stimuli in Prader-Willi syndrome. J Neurol
Neurosurg Psychiatry 78:615–619
Missig G, Robbins JO, Mokler EL, McCullough KM, Bilbo SD,
McDougle CJ, Carlezon WA Jr (2020) Sex-dependent neurobiological
features of prenatal immune activation via TLR7. Mol Psychiatry
25:2330–2341
Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP,
Lupski JR, Reymond A, Walz K (2008) Abnormal social behaviors and
altered gene expression rates in a mouse model for Potocki-Lupski
syndrome. Hum Mol Genet 17:2486–2495
Morales I, Berridge KC (2020) ‘Liking’ and ‘wanting’ in
eating and food reward: brain mechanisms and clinical implications.
Physiol Behav 227:113152
Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A,
Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated
apparatus for quantitation of social approach behaviors in mice. Genes
Brain Behav 3:303–314
Nakasato A, Nakatani Y, Seki Y, Tsujino N, Umino M, Arita H
(2008) Swim stress exaggerates the hyperactive mesocortical dopamine
system in a rodent model of autism. Brain Res 1193:128–135
Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K,
Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa
M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009)
Abnormal behavior in a chromosome-engineered mouse model for human
15q11-13 duplication seen in autism. Cell 137:1235–1246
Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N
(2002) Increased monoamine concentration in the brain and blood of fetal
thalidomide- and valproic acid-exposed rat: putative animal models for
autism. Pediatr Res 52:576–579
Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin
CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford
EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai
G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D,
Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E,
Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks
E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE,
Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B,
Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ (2012)
Patterns and rates of exonic de novo mutations in autism spectrum
disorders. Nature 485:242–245
Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer
MB, Thiele EA (2011) Identification of risk factors for autism spectrum
disorders in tuberous sclerosis complex. Neurology 76:981–987
Ousley O, Rockers K, Dell ML, Coleman K, Cubells JF (2007) A
review of neurocognitive and behavioral profiles associated with 22q11
deletion syndrome: implications for clinical evaluation and treatment.
Curr Psychiatry Rep 9:148–158
Ousley O, Evans AN, Fernandez-Carriba S, Smearman EL,
Rockers K, Morrier MJ, Evans DW, Coleman K, Cubells J (2017) Examining
the overlap between autism spectrum disorder and 22q11.2 deletion
syndrome. Int J Mol Sci 18:1071
Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T,
Rogers SJ, Rozga A, Sangha S, Sigman M, Steinfeld MB, Young GS (2010) A
prospective study of the emergence of early behavioral signs of autism. J
Am Acad Child Adolesc Psychiatry 49:256–266.e1–2
Page DT, Kuti OJ, Prestia C, Sur M (2009) Haploinsufficiency
for Pten and serotonin transporter cooperatively influences brain size
and social behavior. Proc Natl Acad Sci U S A 106:1989–1994
Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP,
Karhson DS, Summers JE, Hinman KE, Motonaga KS, Phillips JM, Carson DS,
Garner JP, Hardan AY (2017) Intranasal oxytocin treatment for social
deficits and biomarkers of response in children with autism. Proc Natl
Acad Sci U S A 114:8119–8124
Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman
TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display
autistic-like behaviours and striatal dysfunction. Nature 472:437–442
Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu
A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P,
Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads
to epilepsy, neuronal migration abnormalities, and core autism-related
deficits. Cell 147:235–246
Piantadosi PT, Halladay LR, Radke AK, Holmes A (2021)
Advances in understanding meso-cortico-limbic-striatal systems mediating
risky reward seeking. J Neurochem 157(5):1547–1571
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei
L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z, Vorstman JA, Thompson A,
Regan R, Pilorge M, Pellecchia G, Pagnamenta AT, Oliveira B, Marshall
CR, Magalhaes TR, Lowe JK, Howe JL, Griswold AJ, Gilbert J, Duketis E,
Dombroski BA, De Jonge MV, Cuccaro M, Crawford EL, Correia CT, Conroy J,
Conceicao IC, Chiocchetti AG, Casey JP, Cai G, Cabrol C, Bolshakova N,
Bacchelli E, Anney R, Gallinger S, Cotterchio M, Casey G, Zwaigenbaum L,
Wittemeyer K, Wing K, Wallace S, van Engeland H, Tryfon A, Thomson S,
Soorya L, Roge B, Roberts W, Poustka F, Mouga S, Minshew N, McInnes LA,
McGrew SG, Lord C, Leboyer M, Le Couteur AS, Kolevzon A, Jimenez
Gonzalez P, Jacob S, Holt R, Guter S, Green J, Green A, Gillberg C,
Fernandez BA, Duque F, Delorme R, Dawson G, Chaste P, Cafe C, Brennan S,
Bourgeron T, Bolton PF, Bolte S, Bernier R, Baird G, Bailey AJ,
Anagnostou E, Almeida J, Wijsman EM, Vieland VJ, Vicente AM,
Schellenberg GD, Pericak-Vance M, Paterson AD, Parr JR, Oliveira G,
Nurnberger JI, Monaco AP, Maestrini E, Klauck SM, Hakonarson H, Haines
JL, Geschwind DH, Freitag CM, Folstein SE, Ennis S, Coon H, Battaglia A,
Szatmari P, Sutcliffe JS, Hallmayer J, Gill M, Cook EH, Buxbaum JD,
Devlin B, Gallagher L, Betancur C, Scherer SW (2014) Convergence of
genes and cellular pathways dysregulated in autism spectrum disorders.
Am J Hum Genet 94:677–694
Pizzagalli DA, Goetz E, Ostacher M, Iosifescu DV, Perlis RH
(2008) Euthymic patients with bipolar disorder show decreased reward
learning in a probabilistic reward task. Biol Psychiatry 64:162–168
Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK,
Gambello MJ (2013) Loss of Tsc2 in Purkinje cells is associated with
autistic-like behavior in a mouse model of tuberous sclerosis complex.
Neurobiol Dis 51:93–103
Resendez SL, Namboodiri VMK, Otis JM, Eckman LEH,
Rodriguez-Romaguera J, Ung RL, Basiri ML, Kosyk O, Rossi MA, Dichter GS,
Stuber GD (2020) Social stimuli induce activation of oxytocin neurons
within the paraventricular nucleus of the hypothalamus to promote social
behavior in male mice. J Neurosci 40:2282–2295
Roberts J, Symons F, Johnson AM, Hatton D, Boccia M (2005)
Blink rate in boys with fragile X syndrome: preliminary evidence for
altered dopamine function. J Intellect Disabil Res 49:647–656
Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis
AM, Stuber GD (2020) Developments from bulk optogenetics to single-cell
strategies to dissect the neural circuits that underlie aberrant
motivational states. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a039792
Salles J, Lacassagne E, Benvegnu G, Berthoumieu SC,
Franchitto N, Tauber M (2020) The RDoC approach for translational
psychiatry: could a genetic disorder with psychiatric symptoms help fill
the matrix? The example of Prader-Willi syndrome. Transl Psychiatry
10:274
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M (2019)
Genetic etiologies, diagnosis, and treatment of tuberous sclerosis
complex. Annu Rev Genomics Hum Genet 20:217–240
Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P,
Ruggero D, Kaphzan H, Klann E (2013) Exaggerated translation causes
synaptic and behavioural aberrations associated with autism. Nature
493:411–415
Semenova AA, Lopatina OL, Salmina AB (2020) Models of autism
and methods for assessing autistic-like behavior in animals. Neurosci
Behav Physiol 50:1024–1034
Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y
(2005) Satiety dysfunction in Prader-Willi syndrome demonstrated by
fMRI. J Neurol Neurosurg Psychiatry 76:260–262
Shaywitz BA, Yager RD, Klopper JH (1976) Selective brain
dopamine depletion in developing rats: an experimental model of minimal
brain dysfunction. Science 191:305–308
Sikich L, Kolevzon A, King BH, McDougle CJ, Sanders KB, Kim
SJ, Spanos M, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML,
Witters Cundiff A, Montgomery A, Siper P, Minjarez M, Nowinski LA,
Marler S, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE,
Crosson H, Hong N, Siecinski SK, Giamberardino SN, Luo S, She L, Bhapkar
M, Dean R, Scheer A, Johnson JL, Gregory SG, Veenstra-VanderWeele J
(2021) Intranasal oxytocin in children and adolescents with autism
spectrum disorder. N Engl J Med 385(16):1462–1473. https://doi.org/10.1056/NEJMoa2103583
-
DOI
Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP
(2011) Increased gene dosage of Ube3a results in autism traits and
decreased glutamate synaptic transmission in mice. Sci Transl Med
3:103ra97
Soderstrom H, Rastam M, Gillberg C (2002) Temperament and
character in adults with Asperger syndrome. Autism 6:287–297
Staal WG (2015) Autism, DRD3 and repetitive and stereotyped
behavior, an overview of the current knowledge. Eur Neuropsychopharmacol
25:1421–1426
Terranova ML, Laviola G (2005) Scoring of social
interactions and play in mice during adolescence. Curr Protoc Toxicol
Chapter 13:Unit13.10
Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R
(2009) Marble burying reflects a repetitive and perseverative behavior
more than novelty-induced anxiety. Psychopharmacology 204:361–373
Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech
JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like
behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice.
Nature 488:647–651
Tschida JE, Yerys BE (2021) A systematic review of the
positive valence system in autism spectrum disorder. Neuropsychol Rev
31:58–88
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP,
Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991)
Identification of a gene (FMR-1) containing a CGG repeat coincident with
a breakpoint cluster region exhibiting length variation in fragile X
syndrome. Cell 65:905–914
Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M,
Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M (2008) FMRP acts as a key
messenger for dopamine modulation in the forebrain. Neuron 59:634–647
Weber-Stadlbauer U, Richetto J, Zwamborn RAJ, Slieker RC,
Meyer U (2021) Transgenerational modification of dopaminergic
dysfunctions induced by maternal immune activation.
Neuropsychopharmacology 46(2):404–412
Whitton AE, Kumar P, Treadway MT, Rutherford AV, Ironside
ML, Foti D, Fitzmaurice G, Du F, Pizzagalli DA (2021) Mapping disease
course across the mood disorder spectrum through a research domain
criteria framework. Biol Psychiatry Cogn Neurosci Neuroimaging
6(7):706–715
Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, Lin HC
(2018) D-Cycloserine ameliorates autism-like deficits by removing
GluA2-containing AMPA receptors in a valproic acid-induced rat model.
Mol Neurobiol 55:4811–4824
Zurcher NR, Walsh EC, Phillips RD, Cernasov PM, Tseng CJ,
Dharanikota A, Smith E, Li Z, Kinard JL, Bizzell JC, Greene RK, Dillon
D, Pizzagalli DA, Izquierdo-Garcia D, Truong K, Lalush D, Hooker JM,
Dichter GS (2021) A simultaneous [(11)C]raclopride positron emission
tomography and functional magnetic resonance imaging investigation of
striatal dopamine binding in autism. Transl Psychiatry 11:33
Des taux élevés de troubles concomitants du déficit de l'attention avec hyperactivité (TDAH) et des "troubles du spectre de l'autisme" (TSA) suggèrent des voies causales communes, qui attendent d'être élucidées. Ce qui est bien établi, cependant, est l'impact négatif du TDAH et du TSA comorbides sur les résultats de la vie quotidienne, en particulier dans l'interaction sociale et la communication et sur la psychopathologie plus large. Les approches neurocognitives suggèrent que les corrélats de la comorbidité sont enracinés dans les réseaux de connectivité fonctionnelle associés au contrôle exécutif. Il existe un soutien pour les origines familiales, avec des études de génétique moléculaire suggérant un rôle causal des gènes pléiotropes. Des recherches plus approfondies sont nécessaires pour élucider pleinement comment le risque génétique de TDAH et de TSA affecte le développement neurologique et pour identifier les corrélats neuronaux structurels et fonctionnels et leurs séquelles comportementales. L'identification des phénotypes intermédiaires est nécessaire pour faire progresser la compréhension, ce qui nécessite des études qui incluent le spectre complet de la gravité des symptômes de TSA et de TDAH, utilisent des conceptions longitudinales et des méthodes multivariées pour sonder de larges constructions, telles que la fonction exécutive et sociale, et prennent en compte d'autres sources d'hétérogénéité, tels que l'âge, le sexe et d'autres psychopathologies. Des essais d'efficacité randomisés ciblant la symptomatologie comorbide sont nécessaires pour atténuer les résultats négatifs sur le développement.
High rates of co-occurring Attention-Deficit Hyperactivity
Disorder (ADHD) and Autism Spectrum Disorders (ASD) suggest common
causal pathways, which await elucidation. What is well-established,
however, is the negative impact of comorbid ADHD and ASD on outcomes for
everyday living, particularly in social interaction and communication
and on broader psychopathology. Neurocognitive approaches suggest
correlates of comorbidity are rooted in functional connectivity networks
associated with executive control. There is support for familial
origins, with molecular-genetic studies suggesting a causal role of
pleiotropic genes. Further investigation is needed to elucidate fully
how genetic risk for ADHD and ASD affects neurodevelopment and to
identify structural and functional neural correlates and their
behavioral sequelae. Identification of intermediate phenotypes is
necessary to advance understanding, which requires studies that include
the full spectrum of ASD and ADHD symptom severity, use longitudinal
designs and multivariate methods to probe broad constructs, such as
executive and social function, and consider other sources of
heterogeneity, such as age, sex, and other psychopathology. Randomized
efficacy trials targeting comorbid symptomatology are needed to mitigate
negative developmental outcomes.
L'autisme est une anomalie de croissance globale dans laquelle les compétences sociales, le langage, la communication et les compétences comportementales sont développées avec retard et comme diversion. Les causes de l'autisme ne sont pas claires, mais diverses théories sur la génétique, l'immunité, les facteurs biologiques et psychosociaux ont été proposées. En fait, l'autisme est un trouble complexe avec des causes distinctes qui coexistent généralement. Bien qu'aucun médicament n'ait été reconnu pour traiter ce trouble, les traitements pharmacologiques peuvent être efficaces pour réduire ses signes, tels que l'automutilation, l'agressivité, les comportements répétitifs et stéréotypés, l'inattention, l'hyperactivité et les troubles du sommeil.
Récemment, des approches complémentaires et alternatives ont été envisagées pour traiter l'autisme. Le Ginkgo biloba est l'une des plantes les plus efficaces avec une longue histoire d'applications dans les troubles neuropsychologiques qui est récemment utilisée pour l'autisme.
La présente revue traite des découvertes récentes, de la physiopathologie et de l'étiologie de l'autisme, puis aborde les résultats prometteurs des remèdes à base de plantes.
Autism is a comprehensive growth abnormality in which social
skills, language, communication, and behavioral skills are developed
with delay and as diversionary. The reasons for autism are unclear, but
various theories of genetics, immunity, biological, and psychosocial
factors have been proffered. In fact, autism is a complex disorder with
distinct causes that usually co-occur. Although no medicine has been
recognized to treat this disorder, pharmacological treatments can be
effective in reducing its signs, such as self-mutilation, aggression,
repetitive and stereotyped behaviors, inattention, hyperactivity, and
sleeping disorders. Recently, complementary and alternative approaches
have been considered to treat autism. Ginkgo biloba is one of the most
effective plants with an old history of applications in
neuropsychological disorders which recently is used for autism. The
present review discusses the recent findings, pathophysiology, and
etiology of autism and thereafter addresses the promising results of
herbal remedies.
Objectif : Vérifier les preuves scientifiques sur l'association entre le "trouble du spectre de l'autisme" et le trouble du traitement auditif central chez les enfants, visant à répondre à la question de recherche suivante : quelle est l'association entre le "spectre de l'autisme" et l'altération du traitement auditif chez les enfants ?
Méthodes : Les études ont été choisies grâce à la combinaison basée sur les termes de titre de sujet médical (MeSH) : [(traitement auditif) et (enfants) et (autisme) et (troubles neurologiques)]. Les bases de données MEDLINE (PubMed), LILACS et SciELO ont été utilisées. Les articles analysés couvraient une période de dix ans, de 2010 à 2020. Nous avons sélectionné des études descriptives, transversales, de cohorte et de cas. Nous avons évalué la qualité des articles, qui avaient un score minimum de six dans l'échelle modifiée de la littérature.
Résultats : 126 articles ont été récupérés après la phase d'exclusion, et 17 d'entre eux ont suivi les critères d'inclusion. Seuls deux articles ont répondu à la question directrice avec des résultats audiologiques.
Conclusions : Les patients diagnostiqués avec un "trouble du spectre de l'autisme" peuvent présenter des troubles du traitement auditif central, étant donné que des changements ont été trouvés à la fois dans les latences absolues et inter-pics dans l'audiométrie de réponse évoquée du tronc cérébral, ainsi que dans la latence et la latéralité de l'amplitude de l'onde N1c. En outre, il y avait des changements dans le traitement auditif comportemental de l'évaluation. Ainsi, les troubles du traitement auditif central sont fréquents chez les enfants avec un diagnostic de "troubles du spectre de l'autisme".
. 2021 Jun 9;S0104-42302021005002209. doi: 10.1590/1806-9282.67.01.20200588.
Objective:
To verify the scientific evidence on the association between
Autistic Spectrum Disorder and Central Auditory Processing Disorder in
children, aiming to answer the following research question: What is the
association between Autistic Spectrum and Alteration of Auditory
Processing in Children?
Methods:
Studies were chosen through the combination based on the Medical
Subject Heading Terms (MeSH): [(auditory processing) and (children) and
(autism) and (neurological disorders)]. The MEDLINE (PubMed), LILACS,
and SciELO databases were used. The analyzed papers covered a ten-year
period, from 2010 to 2020. We selected descriptive, cross-sectional,
cohort, and case studies. We evaluated the quality of the papers, which
had a minimum score of six in the modified scale of the literature.
Results:
126 papers were retrieved after the exclusion phase, and 17 of
them followed the inclusion criteria. Only two papers answered the
guiding question with audiological results.
Conclusions:
Patients diagnosed with autistic spectrum disorder may have
disturbance central auditory processing, considering that changes were
found both in absolute and interpeak latencies in the brainstem evoked
response audiometry, as well as in latency and laterality of the N1c
wave amplitude. In addition, there were changes in the assessment
behavioral auditory processing. Thus, disturbance central auditory
processing is common in children with autistic spectrum disorder.
Li A, Gao G, Fu T, Pang W, Zhang X, Qin Z, Ge R.Int J Pediatr Otorhinolaryngol. 2020 Nov;138:110305. doi: 10.1016/j.ijporl.2020.110305. Epub 2020 Aug 7.PMID: 32836141
Sinha Y, Silove N, Hayen A, Williams K.Cochrane Database Syst Rev. 2011 Dec 7;2011(12):CD003681. doi: 10.1002/14651858.CD003681.pub3.PMID: 22161380Free PMC article.Review.
Objectif : Trouver des preuves du contenu, et de la validité des critères de l'échelle LABIRINTO pour le diagnostic des "troubles du spectre de l'autisme" (TSA) chez les enfants âgés de 24 à 59 mois.
Méthodes : L'échelle a été construite en quatre étapes :
les éléments ont été définis sur la base d'un examen approfondi de la littérature et de discussions avec des spécialistes de l'autisme et du développement de l'enfant ;
des spécialistes du développement de l'enfant ont évalué chaque élément ;
une version préliminaire de l'échelle a été appliquée aux enfants diagnostiqués avec un TSA pour permettre les ajustements nécessaires ;
l'échelle a ensuite été appliquée à 27 enfants avec un développement typique et sans trouble neurodéveloppemental et 48 enfants avec un diagnostic de TSA. Selon la 5e édition du Manuel diagnostique et statistique des troubles mentaux (DSM-5) et la Childhood Autism Rating Scale (CARS), le diagnostic clinique constitue l'étalon-or.
Résultats : Les indices psychométriques de l'échelle étaient appropriés pour la validité de construit, avec Kaiser-Meyer-Olkin = 0,94 et une erreur quadratique moyenne d'approximation = 0,000. Un seul facteur de l'échelle avait un alpha de Cronbach de 0,97. La courbe caractéristique de fonctionnement du récepteur indiquait un seuil de 12, avec une sensibilité de 100 % et une spécificité de 100 % pour distinguer les enfants ayant un développement autistique de ceux ayant un développement typique.
Conclusion : Cette étude a confirmé la validité de l'échelle LABIRINTO.
Objective:
To find evidence of the content, construct, and criterion validity
of the LABIRINTO scale for the diagnosis of autism spectrum disorder
(ASD) in children aged 24-59 months.
Methods:
The scale was constructed in four stages: 1) items were defined
based on an extensive literature review and discussions with autism and
child development specialists; 2) child development specialists
evaluated each item; 3) a preliminary version of the scale was applied
to children diagnosed with ASD to enable any necessary adjustments; 4)
the scale was then applied to 27 children with typical development and
no neurodevelopmental disorder and 48 children with ASD. According to
the 5th edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) and the Childhood Autism Rating Scale (CARS), clinical
diagnosis constitutes the gold standard.
Results:
The scale's psychometric indexes were appropriate for construct
validity, with Kaiser-Meyer-Olkin = 0.94 and root mean square error of
approximation = 0.000. Only one factor on the scale had a Cronbach alpha
of 0.97. The receiver operating characteristic curve indicated a cutoff
of 12, with a sensitivity of 100% and specificity of 100% for
distinguishing children with ASD from those with typical development.
Conclusion:
This study confirmed the validity of the LABIRINTO scale.