Le syndrome de Rett a été inversé dans son modèle génétique chez la souris.
Traduit de l'anglais par Danièle Langloys
La Fondation pour la recherche sur le Syndrome de Rett (RSRF) annonce les résultats d’une recherche-clé qui a permis d’inverser les symptômes du Syndrome de Rett sur son modèle génétique chez la souris. Ces découvertes, faites par Adrian Bird, Professeur de l’Université d’Edimbourg et président du conseil scientifique de la RSRF, ont paru en ligne dans Science Express le 8 février 2007. Le syndrome de Rett est une maladie neurologique de l’enfance qui est la plus invalidante physiquement parmi les troubles du spectre autistique. Les expériences ont été financées par la RSRF, l’association Wellcome, et la Fondation britannique pour le Syndrome de Rett, des Jeans pour des Gènes.
Causé par des mutations sur le gène MECP2, le syndrome de Rett affecte essentiellement les filles ; il frappe au hasard dans la petite enfance et affecte le langage, la mobilité et l’usage fonctionnel de la main. Beaucoup d’enfants se retrouvent en fauteuil roulant ; ceux qui marchent manifestent une démarche anormale, avec une raideur des jambes. Des problèmes respiratoires et des tremblements de type parkinsonien sont courants.
La restauration de l’entière fonctionnalité du gène MEPC2 pendant 4 semaines a fait disparaître les tremblements et normalisé la respiration, la mobilité et la démarche chez des souris qui avaient auparavant tous les symptômes et dans certains cas étaient à quelques jours seulement de la mort.
« Comme beaucoup d’autres, nous pensions que donner le MEPC2 à des souris qui étaient déjà malades ne marcherait pas », a dit Bird. « L’idée qu’on puisse remettre un composant essentiel après la survenue des dommages cérébraux et récupérer une souris apparemment normale semblait tirée par les cheveux, car les cellules du cerveau qui s’étaient développées en l’absence d’un composant-clé étaient censées avoir été endommagées de manière irréversible. Les résultats sont agréablement nets, cependant, et doivent donner de l’espoir à ceux qui sont affectés par ce trouble douloureux. »
Bird est professeur de génétique à l’Université d’Edimbourg et directeur du Centre Wellcome de Biologie Cellulaire. Le MEPC2, identifié pour la première fois en 1990 par Bird, est considéré comme une protéine qui régule l’expression d’autres gènes en les arrêtant au bon moment.
En 1999, Huda Zoghbi, Professeur et Docteur en Médecine au Départements de Génétique Moléculaire et Humaine, Pédiatrie, Neurologie et Neuroscience du Collège de Médecine Baylor, a découvert que le syndrome de Rett était causé par des mutations sur le gène MEPC2. Des mutations sur le gène MEPC2 sont maintenant observées dans quelques cas de schizophrénie, d’autisme classique et de handicaps d’apprentissage.
« Ces découvertes sont extraordinaires et sont pertinentes non seulement pour le syndrome de Rett mais aussi pour une classe plus large de troubles, dont l’autisme et la schizophrénie. La restauration réussie du fonctionnement normal démontrée sur l’exemple des souris suggère que si nous pouvons développer des thérapies pour pallier la perte du MEPC2, nous serons peut-être capables de rendre réversibles les dommages neurologiques chez les enfants et adultes atteints du syndrome de Rett, d’autisme et de troubles neuropsychiatriques apparentés », a ajouté Zoghbi.
Les expériences de réversibilité ont été effectuées dans le laboratoire de Bird par son adjoint de recherche, Jacky Guy. Employant une technologie connue sous le nom de recombinaison Cre-lox 1, elle a créé des souris expérimentales dans lesquelles le MEPC2 a été inactivé par l’insertion d’une cassette stop 2 dans le gène, ce qui provoque les déficiences neurologiques observées dans le Syndrome de Rett. L’inactivation pouvait être rendue réversible à volonté en enlevant la cassette stop, ce qui alors réactivait le gène MEPC2. Ceci a été réalisé en administrant aux souris un médicament qui faisait entrer l’enzyme Cre dans le noyau de la cellule où il pouvait alors déloger la cassette.
En plus de perdre leurs déficiences comportementales manifestes, les souris recouvraient aussi une fonction électrophysiologique-clé. On l’a déterminé en mesurant la LTP 3 (potentialisation à long terme), qui fournit une mesure quantifiable de la capacité des neurones à répondre à une stimulation. On pense depuis longtemps que la LTP reflète la base cellulaire de l’apprentissage et de la mémoire. Bien que la LTP chez les souris de l’expérience fût déficitaire, elle fut restaurée dans ses fonctions normales par les expériences de réversibilité.
« La réversibilité des déficiences neurologiques, rapportée dans le remarquable article de Guy et autres, est surprenante, parce que la cause des symptômes est apparue tôt dans le développement et on s’attendait à ce qu’elle soit permanente. On remarque tout particulièrement la restauration de la LTP, qui est le meilleur équivalent physiologique actuel de l’apprentissage et de la mémoire. Ces découvertes sont très encourageantes pour ceux qui cherchent des traitements parce qu’elles donnent l’espoir que les symptômes pourraient non seulement être stoppés dans leur progression, mais que le cours de la maladie elle-même pourrait être inversé », a affirmé Fred Gage, Docteur en médecine à l’Institut Salk d’Etudes Biologiques.
« Les résultats étonnants du Docteur Bird font entrer le Syndrome de Rett et les autres troubles du spectre autistique dans une nouvelle ère. Les expériences de réversibilité justifient une exploration conquérante de nouvelles étapes sur tous les fronts, de la découverte de médicaments à la thérapie génique. La RSRF concentre ses efforts pour identifier et accélérer les traitements pour les enfants et adultes qui en ont terriblement besoin », a ajouté Monica Coenraads, co-fondatrice et Directrice de recherche à la RSRF, et mère d’une jeune fille atteinte du syndrome.
1-NdT : pour en savoir plus sur la Cre-Lox :
http://www.ipbs.fr/formation/biotech/knockout.pdf
2-NdT : on dit aussi en biologie "cassette de résistance".
3-NdT : en neurologie la LTP est une augmentation de la force chimique d’une synapse qui dure de quelques minutes à plusieurs jours.
Traduit de l'anglais par Danièle Langloys
La Fondation pour la recherche sur le Syndrome de Rett (RSRF) annonce les résultats d’une recherche-clé qui a permis d’inverser les symptômes du Syndrome de Rett sur son modèle génétique chez la souris. Ces découvertes, faites par Adrian Bird, Professeur de l’Université d’Edimbourg et président du conseil scientifique de la RSRF, ont paru en ligne dans Science Express le 8 février 2007. Le syndrome de Rett est une maladie neurologique de l’enfance qui est la plus invalidante physiquement parmi les troubles du spectre autistique. Les expériences ont été financées par la RSRF, l’association Wellcome, et la Fondation britannique pour le Syndrome de Rett, des Jeans pour des Gènes.
Causé par des mutations sur le gène MECP2, le syndrome de Rett affecte essentiellement les filles ; il frappe au hasard dans la petite enfance et affecte le langage, la mobilité et l’usage fonctionnel de la main. Beaucoup d’enfants se retrouvent en fauteuil roulant ; ceux qui marchent manifestent une démarche anormale, avec une raideur des jambes. Des problèmes respiratoires et des tremblements de type parkinsonien sont courants.
La restauration de l’entière fonctionnalité du gène MEPC2 pendant 4 semaines a fait disparaître les tremblements et normalisé la respiration, la mobilité et la démarche chez des souris qui avaient auparavant tous les symptômes et dans certains cas étaient à quelques jours seulement de la mort.
« Comme beaucoup d’autres, nous pensions que donner le MEPC2 à des souris qui étaient déjà malades ne marcherait pas », a dit Bird. « L’idée qu’on puisse remettre un composant essentiel après la survenue des dommages cérébraux et récupérer une souris apparemment normale semblait tirée par les cheveux, car les cellules du cerveau qui s’étaient développées en l’absence d’un composant-clé étaient censées avoir été endommagées de manière irréversible. Les résultats sont agréablement nets, cependant, et doivent donner de l’espoir à ceux qui sont affectés par ce trouble douloureux. »
Bird est professeur de génétique à l’Université d’Edimbourg et directeur du Centre Wellcome de Biologie Cellulaire. Le MEPC2, identifié pour la première fois en 1990 par Bird, est considéré comme une protéine qui régule l’expression d’autres gènes en les arrêtant au bon moment.
En 1999, Huda Zoghbi, Professeur et Docteur en Médecine au Départements de Génétique Moléculaire et Humaine, Pédiatrie, Neurologie et Neuroscience du Collège de Médecine Baylor, a découvert que le syndrome de Rett était causé par des mutations sur le gène MEPC2. Des mutations sur le gène MEPC2 sont maintenant observées dans quelques cas de schizophrénie, d’autisme classique et de handicaps d’apprentissage.
« Ces découvertes sont extraordinaires et sont pertinentes non seulement pour le syndrome de Rett mais aussi pour une classe plus large de troubles, dont l’autisme et la schizophrénie. La restauration réussie du fonctionnement normal démontrée sur l’exemple des souris suggère que si nous pouvons développer des thérapies pour pallier la perte du MEPC2, nous serons peut-être capables de rendre réversibles les dommages neurologiques chez les enfants et adultes atteints du syndrome de Rett, d’autisme et de troubles neuropsychiatriques apparentés », a ajouté Zoghbi.
Les expériences de réversibilité ont été effectuées dans le laboratoire de Bird par son adjoint de recherche, Jacky Guy. Employant une technologie connue sous le nom de recombinaison Cre-lox 1, elle a créé des souris expérimentales dans lesquelles le MEPC2 a été inactivé par l’insertion d’une cassette stop 2 dans le gène, ce qui provoque les déficiences neurologiques observées dans le Syndrome de Rett. L’inactivation pouvait être rendue réversible à volonté en enlevant la cassette stop, ce qui alors réactivait le gène MEPC2. Ceci a été réalisé en administrant aux souris un médicament qui faisait entrer l’enzyme Cre dans le noyau de la cellule où il pouvait alors déloger la cassette.
En plus de perdre leurs déficiences comportementales manifestes, les souris recouvraient aussi une fonction électrophysiologique-clé. On l’a déterminé en mesurant la LTP 3 (potentialisation à long terme), qui fournit une mesure quantifiable de la capacité des neurones à répondre à une stimulation. On pense depuis longtemps que la LTP reflète la base cellulaire de l’apprentissage et de la mémoire. Bien que la LTP chez les souris de l’expérience fût déficitaire, elle fut restaurée dans ses fonctions normales par les expériences de réversibilité.
« La réversibilité des déficiences neurologiques, rapportée dans le remarquable article de Guy et autres, est surprenante, parce que la cause des symptômes est apparue tôt dans le développement et on s’attendait à ce qu’elle soit permanente. On remarque tout particulièrement la restauration de la LTP, qui est le meilleur équivalent physiologique actuel de l’apprentissage et de la mémoire. Ces découvertes sont très encourageantes pour ceux qui cherchent des traitements parce qu’elles donnent l’espoir que les symptômes pourraient non seulement être stoppés dans leur progression, mais que le cours de la maladie elle-même pourrait être inversé », a affirmé Fred Gage, Docteur en médecine à l’Institut Salk d’Etudes Biologiques.
« Les résultats étonnants du Docteur Bird font entrer le Syndrome de Rett et les autres troubles du spectre autistique dans une nouvelle ère. Les expériences de réversibilité justifient une exploration conquérante de nouvelles étapes sur tous les fronts, de la découverte de médicaments à la thérapie génique. La RSRF concentre ses efforts pour identifier et accélérer les traitements pour les enfants et adultes qui en ont terriblement besoin », a ajouté Monica Coenraads, co-fondatrice et Directrice de recherche à la RSRF, et mère d’une jeune fille atteinte du syndrome.
1-NdT : pour en savoir plus sur la Cre-Lox :
http://www.ipbs.fr/formation/biotech/knockout.pdf
2-NdT : on dit aussi en biologie "cassette de résistance".
3-NdT : en neurologie la LTP est une augmentation de la force chimique d’une synapse qui dure de quelques minutes à plusieurs jours.