Traduction: G.M.
(Extraits)
The Cerebellum and Psychiatric Disorders
Abstract
The cerebellum has been considered for a long time to play a role solely in motor coordination. However, studies over the past two decades have shown that the cerebellum also plays a key role in many motor, cognitive, and emotional processes. In addition, studies have also shown that the cerebellum is implicated in many psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. In this review, we discuss existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will also discuss future directions for studies linking the cerebellum to psychiatric disorders.
Le cervelet a été considéré pendant longtemps comme jouant un rôle uniquement dans la coordination motrice. Cependant, des études au cours des deux dernières décennies ont montré que le cervelet joue également un rôle clé dans de nombreux processus moteurs, cognitifs, et émotionnels. En outre, des études ont également montré que le cervelet est impliqué dans de nombreux troubles psychiatriques, y compris le trouble déficitaire de l'attention avec hyperactivité, les troubles du spectre de l'autisme, la schizophrénie, le trouble bipolaire, le trouble dépressif majeur, et les troubles de l'anxiété. Dans cette revue, nous discutons des études rapportant une dysfonction cérébelleuse dans divers troubles psychiatriques existants. Nous allons également discuter des orientations futures pour les études reliant le cervelet à des troubles psychiatriques.
The primary role of the cerebellum has traditionally thought to comprise balance and motor control. However, studies have been emerging that support multiple functions of the cerebellum including emotion regulation, inhibiting impulsive decision making, attention, and working memory (1–5). In addition, many experimental and computational studies show that the cerebellum plays a role in errorless (unsupervised) Learning (6–8).
Le rôle principal du cervelet est traditionnellement pensé pour englober l'équilibre et le contrôle moteur. Cependant, des études ont émergé qui confirment les multiples fonctions du cervelet, y compris la régulation des émotions, en inhibant les décisions impulsives, l'attention et la mémoire de travail (1–5). . En outre, de nombreuses études expérimentales et informatiques montrent que le cervelet joue un rôle dans l'apprentissage sans erreur (sans surveillance) (6–8).
It has been suggested that motor (9), cognitive (10), and emotional abnormalities (5) can result from damage to parts of the cerebellum projecting to the motor areas, the prefrontal cortex, and the limbic system, respectively. Some further suggest that the cerebellar role in cognitive functioning is similar to the cerebellar control of purposive motor skills during motor functioning (11). There is also evidence that the cerebellum may be related to a variety of cognitive abnormalities and psychopathological manifestations (12). Many recent studies have reported a strong association between the structural and functional abnormalities of the cerebellum and psychiatric disorders especially schizophrenia (13, 14), bipolar disorder (15, 16), depression (17–20), anxiety disorders (21–23), attention deficit hyperactivity disorder (ADHD) (24–26), and autism (27, 28).
Il a été suggéré que des anomalies motrices (9), cognitives (10), et émotionnelles (5), peuvent entraîner des dommages à des parties du cervelet se projetant respectivement sur les zones motrices, le cortex préfrontal et le système limbique. Certains laissent en outre entendre que le rôle du cervelet dans le fonctionnement cognitif est similaire au contrôle cérébelleux de la motricité volontaire durant le fonctionnement moteur (11). Il est également prouvé que le cervelet peut être lié à une variété d'anomalies cognitives et manifestations psychopathologiques (12).De nombreuses études récentes ont rapporté une forte corrélation entre les anomalies structurelles et fonctionnelles du cervelet et des troubles psychiatriques en particulier la schizophrénie (13, 14), le trouble bipolaire (15, 16), la dépression (17–20), les troubles anxieux (21–23), le trouble déficitaire de l'attention avec hyperactivité (ADHD) (24–26), et l'autisme (27, 28).
The Cerebellar Circuits
The cerebellum communicates and influences information processing in multiple regions of the brain, including the cerebral cortex (29), spinal cord (30), vestibular nuclei (31), and the brainstem (e.g., the inferior olive and pontine nuclei) (32). Inputs from the spinal cord and brainstem enter the cerebellum through the inferior cerebellar peduncle. Also, afferents from the cerebral cortex (relayed in the pontine nuclei) enter through the middle cerebellar peduncle, and play a role in balance and movement (33).
Le cervelet communique et influence le traitement de l'information dans plusieurs régions du cerveau, comprenant le cortex cérébral (29), la moelle épinière (30), les noyaux vestibulaires (31), et le tronc cérébral (par exemple, l'olive bulbaire inférieure et le griseum pontis) (32). Les entrées de la moelle épinière et du tronc cérébral rejoignent le cervelet par le pédoncule cérébelleux inférieur. En outre, les afférences du cortex cérébral (relayé dans les noyaux pontiques) entrent par le pédoncule cérébelleux moyen, et jouent un rôle dans l'équilibre et le mouvement (33).
The cerebellum projects to the brainstem and cerebral motor cortex via the red nucleus and ventrolateral nucleus of the thalamus (34). There are three output pathways from the cerebellum: (1) the cerebellar vermis indirectly to the pons, medulla, and reticular formation; (2) the intermediate zone of the cerebellum indirectly to the red nucleus and thalamus; and (3) the lateral zone of cerebellar hemisphere indirectly to the thalamus (35). After the thalamic connection, those fibers are projected to different parts of the cerebral cortex, including frontal cortex, motor cortex, and parietal cortex (35, 36).
Le cervelet s'étend au tronc cérébral et au cortex cérébral moteur par l'intermédiaire du noyau rouge et du noyau ventro latéral du thalamus (34).
Il y a trois voies de sortie du cervelet:
(1) les vermis cérébelleux indirectement vers la protubérance, le bulbe, et la formation réticulée;
(2) la zone intermédiaire du cervelet indirectement vers le noyau rouge et le thalamus; et
(3) la zone latérale de l'hémisphère cérébelleux indirectement vers le thalamus(35).
The cortico-ponto-cerebellar and cerebello-thalamo-cortical pathways allow the cerebellum to affect information processing in cortical areas responsible for cognitive and emotional processes (2). These intricate connections between the cerebellum and other structures can explain why cerebellar damage can lead to various psychiatric disorders. Below, we discuss common psychiatric disorders associated with cerebellar abnormalities (see Figure 1 for a simplified cerebellar interactions with other brain regions).
Les voies cortico-ponto-cérébelleuse et ponto-thalamo-corticales du cervelet permettent d'affecter le traitement de l'information dans les zones corticales responsables de processus cognitifs et émotionnels (2). Ces connexions complexes entre le cervelet et les autres structures peuvent expliquer pourquoi des dommages cérébelleux peuvent mener à divers troubles psychiatriques. Ci-dessous, nous discutons de troubles psychiatriques communs associés à des anomalies du cervelet (voir Figure 1 pendant simplifiées interactions cérébelleux avec d'autres régions du cerveau).
A simplified diagram of the cerebellum along with connections with brain regions (cortex and brainstem).
Un schéma simplifié du cervelet avec les connexions avec les régions du cerveau (cortex et tronc cérébral)
Autism Spectrum Disorders
Autism spectrum disorder (ASD) includes a range of motor symptoms, including repeated and stereotyped movements, impaired social interactions [poor recognition of emotions, difficulty displaying physical gestures typically used in social interaction; (38)]. Interestingly, it was found that cerebellar damage in infants can predict the occurrence of autism in older age (49). The cerebellum is able to influence the motor cortex and prefrontal cortex area, two areas that are responsible for motor control and social cognition, so it is not surprising that abnormalities in the cerebellum would cause symptoms that observed in ASD.
Les troubles du spectre autistique
Le trouble du spectre autistique (TSA) comprend un éventail de symptômes moteurs, comprenant des mouvements répétés et stéréotypés, des déficits dans les interactions sociales [mauvaise reconnaissance des émotions, des difficultés à afficher des gestes physiques généralement utilisés dans l'interaction sociale; (38)]. Curieusement, il a été constaté que les dommages cérébelleux chez les nourrissons peuvent prédire l'apparition de l'autisme chez les personnes âgées (49). Le cervelet est capable d'influencer le cortex moteur et la zone du cortex préfrontal, deux domaines qui sont responsables du contrôle de la motricité et de la cognition sociale, il n'est donc pas surprenant que des anomalies dans le cervelet puissent causer les symptômes qui sont observés dans les TSA.
Using a mouse model, Tsai et al. (50) have demonstrated in mutant mice that a decrease in Purkinje cell functioning leads to ASD-like behaviors, including abnormal social and motor behaviors (50, 51). This finding appears to be consistent with human studies as postmortem investigations have also shown a decrease in Purkinje cell density in patients with ASD (51, 52). Being GABAergic, a reduction of these cells may increase activity in the cerebellum–cortex pathway, which may explain the occurrence of repeated movements in ASD. This, however, needs to be confirmed or disconfirmed in future experimental studies that relate Purkinje cell loss to exact symptom domains (motor vs. social dysfunction) in ASD.
En utilisant un modèle de souris, Tsai et al.(50) ont démontré chez des souris mutantes qu'une diminution du fonctionnement des cellules de Purkinje conduit à des comportements semblables au TSA, y compris les comportements moteurs et sociaux anormaux (50, 51). Ce constat semble être cohérent avec les études humaines avec des investigations post-mortem qui ont également montré une diminution de la densité des cellules de Purkinje chez les patients avec un diagnostic de TSA (51, 52). Être GABAergique, une réduction de ces cellules peut augmenter l'activité dans la voie du cortex cerébelleux, ce qui peut expliquer l'apparition de mouvements répétés dans le TSA. Ceci, cependant, doit être confirmé ou infirmé dans les futures études expérimentales qui se rapportent à al perte des cellules de Purkinje dans des domaines précis de symptômes (dysfonction motrice vs sociale) dans les TSA.
Using diffusion tensor magnetic resonance tractography, one study found altered connectivity in the superior peduncles and the short intra-cerebellar fibers in patients with Asperger’s syndrome [a mild disorder of the autism spectrum; (53)]. Decreased activity in the peduncle regions have also been related to poorer motor abilities in patients with ASD (54). There is an additional possible defect in the formation of cerebello-frontal circuits in Asperger’s syndrome (55). These deficits may be the cause of the motor and cognitive impairments observed in ASD-like patients.
En utilisant la tractographie à tenseur de diffusion par résonance magnétique, une étude a révélé une connectivité altérée dans les pédoncules supérieurs et les fibres intra-cérébelleux courtes chez les patients avec un diagnostic de syndrome d'Asperger [un trouble léger du spectre de l'autisme; (53)]. La diminution de l'activité dans les régions du pédoncule a également été liée à de plus faibles capacités motrices chez les patients avec un diagnostic de TSA (54). Il existe un défaut supplémentaire possible dans la formation de circuits ponto-frontaux dans le syndrome d'Asperger (55). Ces déficits peuvent être la cause des troubles moteurs et des cognitifs observés chez les patients avec des symptômes ressemblant au TSA.
Studies have also shown that impairment of adaptation of social behavior in patients with ASD may be caused by malfunctioning feedback pathways from the cerebellum to the cerebral cortex (56, 57). Also, the fibers of the middle and inferior cerebellar peduncles connecting the cerebellum with the frontal lobe are abnormally organized. This may be as either a direct cause or a consequence of changes in the cerebral cortex and cerebellar nuclei in patients with autism. Specifically, pathological changes are evident in the superior peduncles of the cerebellum in children with ASD. These pathological changes explain coordination deficits and ataxia, which are commonly presenting features in autistic-like behaviors (58).
Des études ont également montré que le déficit de l'adaptation du comportement social chez les patients avec un diagnostic de TSA peuvent être causées par le dysfonctionnement des voies de rétroaction du cervelet vers le cortex cérébral (56, 57). En outre, les fibres des pédoncules cérébelleux moyens et inférieurs connectant le cervelet avec le lobe frontal sont anormalement organisées. Cela peut être soit comme une cause directe ou une conséquence de changements dans le cortex cérébral et dans les noyaux cérébelleux chez les patients avec autisme. Plus précisément, les changements pathologiques sont évidents dans les pédoncules supérieurs du cervelet chez les enfants présentant un TSA. Ces changements pathologiques expliquent les déficits et l'ataxie de coordination, qui sont couramment présentés comme des caractéristiques des comportements autistiques.(58).
Currently, there appear to be three main cerebellar abnormalities observed in patients with ASD: diminished Purkinje cells, reduced cerebellar volume, and interrupted feedback pathways between the cerebellar and cerebral areas. The latter two may also be bi-products of diminished Purkinje cells, suggesting that this is the root cause of the disorder. As Purkinje cells are inhibitory in nature, a lack of these cells would decrease inhibition that the cerebellum projects to the cortical and subcortical areas, leading to hypersensitivity of these brain regions found in most ASD patients (59).
Actuellement, il semble y avoir trois principales anomalies cérébelleuses observées chez les patients avec un diagnostic de TSA: la diminution des cellules de Purkinje, la réduction du volume du cervelet, et l'interruption des voies de rétroaction voies entre le cervelet et les zones cérébrales. Les deux derniers peuvent aussi être des sous-produits de la diminution des cellules de Purkinje, suggérant que cela est la cause principale du trouble. Comme les cellules de Purkinje sont inhibitrices dans la nature, l'absence de ces cellules diminuerait l'inhibition des projections du cervelet vers les aires corticales et sous-corticales, menant à une hypersensibilité de ces régions du cerveau trouvée chez la plupart des patients avec TSA (59).
Most studies to date on Purkinje cells and ASD focused on either Asperger’s syndrome or autism; however, it would be beneficial to investigate how Purkinje cell density is related to autistic severity. As Purkinje cells inhibit the cerebral cortex and mid-brain areas, we would surmise that patients with severe autism would also exhibit a much lower Purkinje cell density as they are more prone to being overwhelmed by stimuli. Additionally, if Purkinje cell density was to decrease further, the patient’s symptoms would worsen.
La plupart des études à ce jour sur les cellules de Purkinje et le TSA ont porté soit sur le syndrome d'Asperger ou sur l'autisme; Cependant, il serait avantageux d'étudier comment la densité des cellules de Purkinje est liée à la sévérité de l'autisme. Comme les cellules de Purkinje inhibent les zones du cortex et le mésencéphale cérébraux, nous supposons que les patients présentant un autisme sévère présenteront aussi une densité beaucoup plus faible des cellules de Purkinje comme ils sont plus enclins à être submergés par des stimuli. En outre, si la densité des cellules de Purkinje diminuaient encore, les symptômes du patient ne feraient qu'empirer.
In sum, autistic spectrum disorders are developmental-based disorders; however, as studies focus on patients who have been diagnosed with the disorder, it is difficult to see when the neurological abnormalities began. Longitudinal studies beginning at birth that focus on functional and structural aspects of the child’s brain may offer predictive markers in the cerebellum that would increase the risk of developing ASD.
En somme, les troubles du spectre autistique sont des troubles développementaux; cependant, alors que les études se concentrent sur des patients qui ont été diagnostiqués avec le trouble, il est difficile de voir quand les anomalies neurologiques ont débuté. Des études longitudinales commençant à la naissance qui se concentrent sur les aspects fonctionnels et structurels du cerveau de l'enfant peuvent offrir des marqueurs prédictifs dans le cervelet qui augmenteraient le risque de développer un TSA.
Conclusion
Growing evidence and recent data suggest that the cerebellum plays a role not only in the control of balance and intentional voluntary movement but also plays an important role in the control of cognitive and emotional processes. The exact involvement of the cerebellum in these functions and its role in psychiatric and neurological disorders is clearly supported by functional and structural imaging studies. As discussed above, the cerebellum was found to be associated not only with psychiatric and cognitive symptoms in different disorders but also with pharmacological and behavioral therapies. However, it is still unclear how cerebellar dysfunction relates to different symptoms in psychiatric disorders. Future research using different motor and cognitive tasks in different types and subtypes of psychiatric and neurological disorders are still needed. Attention must be drawn to the interaction of genetic, developmental, structural, and functional brain changes involving the cerebellum in the production of symptoms in different psychiatric and neurological disorders.
De plus en plus de preuves et des données récentes suggèrent que le cervelet joue un rôle non seulement dans le contrôle de l'équilibre et du mouvement volontaire intentionnel, mais joue également un rôle important dans le contrôle des processus cognitifs et émotionnels. L'implication exacte du cervelet dans ces fonctions et son rôle dans des troubles psychiatriques et neurologiques est clairement étayée par des études d'imagerie fonctionnelle et structurelle. Comme discuté ci-dessus, le cervelet a été trouvé comme étant associé non seulement avec des symptômes psychiatriques et cognitifs dans différents troubles, mais aussi avec des thérapies pharmacologiques et comportementales. Cependant, il est encore difficile de savoir comment la dysfonction cérébelleuse se rapporte à différents symptômes dans les troubles psychiatriques. Les recherches futures utilisant des tâches motrices et cognitives différentes dans les différents types et sous-types de troubles psychiatriques et neurologiques sont encore nécessaires. L'attention doit être attirée sur l'interaction des changements génétiques, développementaux, structurelles et fonctionnelles du cerveau impliquant le cervelet dans la production de symptômes dans différents troubles psychiatriques et neurologiques.
The majority of studies are inconclusive when addressing specific anatomical abnormalities in the cerebellum that are present in psychiatric disorders. However, several of the disorders discussed share similar cerebellar abnormalities, for example, ASD, schizophrenia, bipolar, and MDD all show decreased volume in the vermis; however, their symptoms are remarkably different. As each area of the cerebellum projects to different areas of the cerebral cortex and mid-brain (106), the variety of symptoms suggests that the abnormalities of each disorder focused to specific areas, rather than the cerebellum as a whole. This may explain the wide range of symptoms observed across the disorders. For example, strong connectivity between the VIIb and IX vermis areas and the visual network has been noted by Sang et al. (106). This area is also known to have reduced blood flow in schizophrenic patients, which in turn could be a factor in visual hallucinations experience by the patient. The same can be said with hemispheric areas VI, VIIb, and VIII, which show connectivity with the auditory network (106) and could explain auditory hallucinations present in some schizophrenic patients. This problem highlights the need for more topographical studies focusing on smaller areas when looking for cerebellar abnormalities in these disorders.
La majorité des études ne sont pas concluantes lorsque s'adressent à des anomalies anatomiques spécifiques dans le cervelet qui sont présentes dans les troubles psychiatriques. Cependant, plusieurs des troubles cérébelleux traitent d'anomalies similaires, par exemple, le TSA, la schizophrénie, le trouble bipolaire et MDD ont tous montré une diminution de volume dans le vermis; Toutefois, leurs symptômes sont remarquablement différentes. Comme chaque zones du cervelet projette dans différentes zones du cortex cérébral et du mésencéphale (106), la variété des symptômes suggère que les anomalies de chaque trouble porte sur des zones spécifiques, plutôt que sur le cervelet dans son ensemble. Cela peut expliquer la large gamme de symptômes observés dans les troubles. Par exemple, une forte connectivité entre le VIIb et IX vermis domaines et le réseau visuelle a été noté par Sang et al. (106). Cette région est également connue pour avoir réduit le flux sanguin chez les patients schizophrènes, ce qui pourrait être un facteur dans les hallucinations visuelles expérimentées par le patient. La même chose peut être dit avec des zones continentales VI, VII b, et VIII, qui montrent la connectivité avec le réseau auditive (106) et pourrait expliquer les hallucinations auditives présentes chez certains patients schizophrènes. Ce problème met en évidence la nécessité de plus d'études topographiques se concentrant sur des zones plus petites lors de la recherche des anomalies du cervelet dans ces troubles.
In sum, our review shows that most prior studies of cerebellar function in psychiatric disorders did not focus on (a) investigating the different symptom domains for each disorder in relation to exact cerebellar damage, (b) testing which subregions of the cerebellum are related to the symptoms in each psychiatric disorder, (c) understanding drug effects, and (d) understanding neurodevelopmental changes associated with psychiatric disorders. In addition to experimental studies testing these points, theoretical analyses and computational modeling work are needed to explain how damage to certain subregions of the cerebellum relates to specific symptom clusters.
En somme, notre étude montre que la plupart des études antérieures de la fonction cérébelleuse dans les troubles psychiatriques ne se concentrent pas sur
(a) enquêter sur les différents domaines de symptômes pour chaque trouble par rapport aux bons dommages cérébelleux,
(b) tester quelles sous-régions du cervelet sont liées aux symptômes de chaque trouble psychiatrique,
(c) comprendre es effets des médicaments et
(d) comprendre les changements neurodéveloppementaux associés aux troubles psychiatriques.
En plus des études expérimentales testant ces points, des analyses théoriques et des travaux de modélisation informatique sont nécessaires pour expliquer comment des dommages de certaines sous-régions du cervelet concernent des groupes spécifiques de symptômes.
Références
28. Wegiel J, Flory M, Kuchna I, Nowicki K, Ma S, Imaki H, et al. Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathol Commun (2014) 2(1):141. doi:10.1186/s40478-014-0141-7
49. Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics (2007) 120(3):584–93. doi:10.1542/peds.2007-1041
Aucun commentaire:
Enregistrer un commentaire