Aperçu: G.M.
Les chercheurs ont généré
des souris mutantes de la lignée germinale avec des mutations de perte
de fonction dans Chd8, une mutation de novo fortement associée aux TSA,
et isl démontrent que ces souris présentent des comportements caractéristiques du TSA, une macrocéphalie et des anomalies craniofaciales
similaires aux phénotypes des personnes avec un diagnostic de TSA.
Les
souris Chd8 +/- présentent une large dérégulation spécifique de la
région du cerveau des principaux processus de régulation et
cellulaires, notamment la modification des histones et de la chromatine,
le traitement des ARNm et des protéines, la signalisation Wnt et la
régulation du cycle cellulaire, ainsi qu'une physiologie synaptique altérée dans les neurones épineux moyens du noyau accumbens. La
perturbation du Chd8 chez les souris adultes récapitule l'amélioration
du comportement d'apprentissage moteur acquis chez les animaux Chd8 +/-,
ce qui suggère un rôle pour la CHD8 dans les circuits du stratum des adultes.
Ces résultats supportent un mécanisme reliant la modification de la
chromatine au dysfonctionnement striatal et la pathologie moléculaire
des TSA.
Cell Rep. 2017 Apr 11;19(2):335-350. doi: 10.1016/j.celrep.2017.03.052.
Chd8 Mutation Leads to Autistic-like Behaviors and Impaired Striatal Circuits
Platt RJ1, Zhou Y2, Slaymaker IM3, Shetty AS4, Weisbach NR5, Kim JA2, Sharma J6, Desai M2, Sood S7, Kempton HR8, Crabtree GR7, Feng G9, Zhang F10.
Author information
- 1
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; Department of Chemistry, University of Basel, Basel 4056, Switzerland. Electronic address: rplatt@ethz.ch
- 2
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, MA 02139, USA.
- 3
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, MA 02139, USA.
- 4
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
- 5
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland.
- 6
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
- 7
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
- 8
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- 9
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- 10
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address: zhang@broadinstitute.org
Abstract
Autism spectrum disorder
(ASD) is a heterogeneous disease, but genetically defined models can
provide an entry point to studying the molecular underpinnings of this disorder.
We generated germline mutant mice with loss-of-function mutations in
Chd8, a de novo mutation strongly associated with ASD, and demonstrate
that these mice display hallmark ASD behaviors, macrocephaly, and
craniofacial abnormalities similar to patient phenotypes. Chd8+/-
mice display a broad, brain-region-specific dysregulation of major
regulatory and cellular processes, most notably histone and chromatin
modification, mRNA and protein processing, Wnt signaling, and cell-cycle
regulation. We also find altered synaptic physiology in medium spiny
neurons of the nucleus accumbens. Perturbation of Chd8 in adult mice
recapitulates improved acquired motor learning behavior found in Chd8+/-
animals, suggesting a role for CHD8 in adult striatal circuits. These
results support a mechanism linking chromatin modification to striatal
dysfunction and the molecular pathology of ASD.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
- PMID: 28402856
- DOI: 10.1016/j.celrep.2017.03.052
Aucun commentaire:
Enregistrer un commentaire