14 mai 2017

Diagnostic assisté par ordinateur EEG du trouble du spectre autistique utilisant Wavelet, Entropy et ANN

Aperçu: G.M.
Le trouble du spectre de l'autisme (TSA) est un type de trouble du développement neurologique avec des déficiences de base dans les relations sociales, la communication, l'imagination ou la flexibilité de la pensée et le répertoire restreint d'activité et d'intérêt. Dans ce travail, un nouveau diagnostic assisté par ordinateur (CAO) de l'autisme basé sur l'analyse du signal d'électroencéphalographie (EEG) est étudié. 
La méthode proposée a obtenu des résultats prometteurs testés en utilisant un jeu de données réel fourni par l'hôpital King Abdulaziz, Djeddah, en Arabie Saoudite.

 


Biomed Res Int. 2017;2017:9816591. doi: 10.1155/2017/9816591. Epub 2017 Apr 18.

EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN

Author information

1
Electrical Engineering Department, College of Engineering, King Saud University, Box 800, Riyadh 11421, Saudi Arabia.

Abstract

Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism ‎based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia.
PMID:28484720
PMCID:PMC5412163
DOI:10.1155/2017/9816591

Aucun commentaire: