Aperçu: G.M.
Le
trouble du spectre de l'autisme (TSA) est un type de trouble du
développement neurologique avec des déficiences de base dans les
relations sociales, la communication, l'imagination ou la flexibilité de
la pensée et le répertoire restreint d'activité et d'intérêt. Dans
ce travail, un nouveau diagnostic assisté par ordinateur (CAO) de
l'autisme basé sur l'analyse du signal d'électroencéphalographie (EEG)
est étudié.
La méthode proposée a obtenu des résultats prometteurs testés en
utilisant un jeu de données réel fourni par l'hôpital King Abdulaziz,
Djeddah, en Arabie Saoudite.
Biomed Res Int. 2017;2017:9816591. doi: 10.1155/2017/9816591. Epub 2017 Apr 18.
EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN
Djemal R1, AlSharabi K1, Ibrahim S1, Alsuwailem A1.
Author information
- 1
- Electrical Engineering Department, College of Engineering, King Saud University, Box 800, Riyadh 11421, Saudi Arabia.
Abstract
Autism
spectrum disorder (ASD) is a type of neurodevelopmental disorder with
core impairments in the social relationships, communication,
imagination, or flexibility of thought and restricted repertoire of
activity and interest. In this work, a new computer aided diagnosis
(CAD) of autism based on electroencephalography (EEG) signal analysis
is investigated. The proposed method is based on discrete wavelet
transform (DWT), entropy (En), and artificial neural network (ANN). DWT
is used to decompose EEG signals into approximation and details
coefficients to obtain EEG subbands. The feature vector is constructed
by computing Shannon entropy values from each EEG subband. ANN
classifies the corresponding EEG signal into normal or autistic based on
the extracted features. The experimental results show the effectiveness
of the proposed method for assisting autism diagnosis. A receiver
operating characteristic (ROC) curve metric is used to quantify the
performance of the proposed method. The proposed method obtained
promising results tested using real dataset provided by King Abdulaziz
Hospital, Jeddah, Saudi Arabia.
- PMID:28484720
- PMCID:PMC5412163
- DOI:10.1155/2017/9816591
Aucun commentaire:
Enregistrer un commentaire