Aperçu: G.M.
En utilisant ces méthodes automatisées, le volume total du cerveau (TBV), le volume de la matière grise (GM) et le volume de la matière blanche (WM) ont été estimés en utilisant trois Boîtes
à outils automatiques largement utilisées: SPM , FreeSurfer et
FSL.
Des
comparaisons de volume en couches minces contre épaisseur ont été
faites pour chaque méthode en utilisant des coefficients de corrélation
intraclasse (ICC). Les résultats SPM ont montré d'excellents ICC (0,97, 0,85 et 0,83 pour TBV, GMV et WMV, respectivement).
Des images IRM de qualité clinique pour l'épaisseur peuvent être utilisées
avec fiabilité pour calculer des paramètres quantitatifs du cerveau tels
que TBV, GMV et WMV en utilisant SPM.
Radiology. 2017 Apr 27:161928. doi: 10.1148/radiol.2017161928.
Leveraging Clinical Imaging Archives for Radiomics: Reliability of Automated Methods for Brain Volume Measurement
Adduru VR1, Michael AM1, Helguera M1, Baum SA1, Moore GJ1.
Author information
- 1
- From the Institute for Advanced Application (V.R.A., A.M.M., G.J.M.), Autism and Developmental Medicine Institute (A.M.M.), and Department of Radiology (G.J.M.), Geisinger Health System, 100 N Academy Ave, Danville, PA 17822; and Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY (V.R.A., A.M.M., M.H., S.A.B.).
Abstract
Purpose
To validate the use of thick-section clinically acquired magnetic
resonance (MR) imaging data for estimating total brain volume (TBV),
gray matter (GM) volume (GMV), and white matter (WM) volume (WMV) by
using three widely used automated toolboxes: SPM (
www.fil.ion.ucl.ac.uk/spm/ ), FreeSurfer ( surfer.nmr.mgh.harvard.edu ),
and FSL (FMRIB software library; Oxford Centre for Functional MR
Imaging of the Brain, Oxford, England, https://fsl.fmrib.ox.ac.uk/fsl ).
Materials and Methods MR images from a clinical archive were used and
data were deidentified. The three methods were applied to estimate brain
volumes from thin-section research-quality brain MR images and routine
thick-section clinical MR images acquired from the same 38 patients (age
range, 1-71 years; mean age, 22 years; 11 women). By using these
automated methods, TBV, GMV, and WMV were estimated. Thin- versus
thick-section volume comparisons were made for each method by using
intraclass correlation coefficients (ICCs). Results SPM exhibited
excellent ICCs (0.97, 0.85, and 0.83 for TBV, GMV, and WMV,
respectively). FSL exhibited ICCs of 0.69, 0.51, and 0.60 for TBV, GMV,
and WMV, respectively, but they were lower than with SPM. FreeSurfer
exhibited excellent ICC of 0.63 only for TBV. Application of SPM's
voxel-based morphometry on the modulated images of thin-section images
and interpolated thick-section images showed fair to excellent ICCs
(0.37-0.98) for the majority of brain regions (88.47% [306924 of 346916
voxels] of WM and 80.35% [377 282 of 469 502 voxels] of GM). Conclusion
Thick-section clinical-quality MR images can be reliably used for
computing quantitative brain metrics such as TBV, GMV, and WMV by using
SPM. © RSNA, 2017 Online supplemental material is available for this article.
- PMID: 28448234
- DOI: 10.1148/radiol.2017161928
Aucun commentaire:
Enregistrer un commentaire